Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genomics ; 8: 8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24885782

ABSTRACT

BACKGROUND: Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes. RESULTS: We present Quadruplex forming 'G'-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively. CONCLUSIONS: We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5'- and 3'-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means to build datasets that can be filtered and categorized in a variety of biological dimensions for more targeted studies in order to better understand the roles that G-quadruplexes play.


Subject(s)
Alternative Splicing/genetics , Evolution, Molecular , G-Quadruplexes , Nucleotide Motifs/genetics , Animals , Base Sequence , Conserved Sequence/genetics , Humans , Phylogeny , Sequence Analysis, DNA
2.
Yale J Biol Med ; 85(3): 309-21, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23012579

ABSTRACT

The highly interdisciplinary field of bioinformatics has emerged as a powerful modern science. There has been a great demand for undergraduate- and graduate-level trained bioinformaticists in the industry as well in the academia. In order to address the needs for trained bioinformaticists, its curriculum must be offered at the undergraduate level, especially at four-year colleges, where a majority of the United States gets its education. There are many challenges in developing an undergraduate-level bioinformatics program that needs to be carefully designed as a well-integrated and cohesive interdisciplinary curriculum that prepares the students for a wide variety of career options. This article describes the challenges of establishing a highly interdisciplinary undergraduate major, the development of an undergraduate bioinformatics degree program at Ramapo College of New Jersey, and lessons learned in the last 10 years during its management.


Subject(s)
Biomedical Engineering/education , Computational Biology/education , Curriculum , Program Development/methods , Universities/organization & administration , Computational Biology/methods , Databases, Factual , Drug Discovery/education , Humans , New Jersey , Problem-Based Learning , Students
3.
Nucleic Acids Res ; 40(Web Server issue): W96-W103, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22576365

ABSTRACT

Naturally occurring G-quadruplex structural motifs, formed by guanine-rich nucleic acids, have been reported in telomeric, promoter and transcribed regions of mammalian genomes. G-quadruplex structures have received significant attention because of growing evidence for their role in important biological processes, human disease and as therapeutic targets. Lately, there has been much interest in the potential roles of RNA G-quadruplexes as cis-regulatory elements of post-transcriptional gene expression. Large-scale computational genomics studies on G-quadruplexes have difficulty validating their predictions without laborious testing in 'wet' labs. We have developed a bioinformatics tool, QGRS-H Predictor that can map and analyze conserved putative Quadruplex forming 'G'-Rich Sequences (QGRS) in mRNAs, ncRNAs and other nucleotide sequences, e.g. promoter, telomeric and gene flanking regions. Identifying conserved regulatory motifs helps validate computations and enhances accuracy of predictions. The QGRS-H Predictor is particularly useful for mapping homologous G-quadruplex forming sequences as cis-regulatory elements in the context of 5'- and 3'-untranslated regions, and CDS sections of aligned mRNA sequences. QGRS-H Predictor features highly interactive graphic representation of the data. It is a unique and user-friendly application that provides many options for defining and studying G-quadruplexes. The QGRS-H Predictor can be freely accessed at: http://quadruplex.ramapo.edu/qgrs/app/start.


Subject(s)
G-Quadruplexes , Sequence Homology, Nucleic Acid , Software , Internet , Nucleotide Motifs , RNA, Messenger/chemistry , Sequence Analysis, DNA , Sequence Analysis, RNA
4.
Methods Mol Biol ; 419: 1-21, 2008.
Article in English | MEDLINE | ID: mdl-18369972

ABSTRACT

Interactions between RNA-binding proteins and cis-acting elements in the 5'- and 3'-untranslated regions (UTRs) of transcripts are responsible for regulating essential biological activities, such as mRNA localization, mRNA turnover, and translation efficiency. This chapter introduces some of the publicly available free bioinformatics resources, including software tools and databases, which can be used for predicting, mapping, and characterizing regulatory motifs found in the eukaryotic mRNA-untranslated regions.


Subject(s)
Computational Biology , Untranslated Regions/genetics , Algorithms , Databases, Nucleic Acid , Molecular Biology/methods , Molecular Biology/statistics & numerical data , Sequence Alignment/statistics & numerical data , Software , Untranslated Regions/chemistry
5.
Nucleic Acids Res ; 36(Database issue): D141-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18045785

ABSTRACT

G-quadruplex motifs in the RNA play significant roles in key cellular processes and human disease. While sequences capable of forming G-quadruplexes in the pre-mRNA are involved in regulation of polyadenylation and splicing events in mammalian transcripts, the G-quadruplex motifs in the UTRs may help regulate mRNA expression. GRSDB2 is a second-generation database containing information on the composition and distribution of putative Quadruplex-forming G-Rich Sequences (QGRS) mapped in approximately 29 000 eukaryotic pre-mRNA sequences, many of which are alternatively processed. The data stored in the GRSDB2 is based on computational analysis of NCBI Entrez Gene entries with the help of an improved version of the QGRS Mapper program. The database allows complex queries with a wide variety of parameters, including Gene Ontology terms. The data is displayed in a variety of formats with several additional computational capabilities. We have also developed a new database, GRS_UTRdb, containing information on the composition and distribution patterns of putative QGRS in the 5'- and 3'-UTRs of eukaryotic mRNA sequences. The goal of these experiments has been to build freely accessible resources for exploring the role of G-quadruplex structure in regulation of gene expression at post-transcriptional level. The databases can be accessed at the G-Quadruplex Resource Site at: http://bioinformatics.ramapo.edu/GQRS/.


Subject(s)
Databases, Nucleic Acid , G-Quadruplexes , RNA Precursors/chemistry , RNA, Messenger/chemistry , Untranslated Regions/chemistry , Alternative Splicing , Animals , Humans , Internet , Rats , User-Computer Interface
6.
Nucleic Acids Res ; 34(Web Server issue): W676-82, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16845096

ABSTRACT

The quadruplex structures formed by guanine-rich nucleic acid sequences have received significant attention recently because of growing evidence for their role in important biological processes and as therapeutic targets. G-quadruplex DNA has been suggested to regulate DNA replication and may control cellular proliferation. Sequences capable of forming G-quadruplexes in the RNA have been shown to play significant roles in regulation of polyadenylation and splicing events in mammalian transcripts. Whether quadruplex structure directly plays a role in regulating RNA processing requires investigation. Computational approaches to study G-quadruplexes allow detailed analysis of mammalian genomes. There are no known easily accessible user-friendly tools that can compute G-quadruplexes in the nucleotide sequences. We have developed a web-based server, QGRS Mapper, that predicts quadruplex forming G-rich sequences (QGRS) in nucleotide sequences. It is a user-friendly application that provides many options for defining and studying G-quadruplexes. It performs analysis of the user provided genomic sequences, e.g. promoter and telomeric regions, as well as RNA sequences. It is also useful for predicting G-quadruplex structures in oligonucleotides. The program provides options to search and retrieve desired gene/nucleotide sequence entries from NCBI databases for mapping G-quadruplexes in the context of RNA processing sites. This feature is very useful for investigating the functional relevance of G-quadruplex structure, in particular its role in regulating the gene expression by alternative processing. In addition to providing data on composition and locations of QGRS relative to the processing sites in the pre-mRNA sequence, QGRS Mapper features interactive graphic representation of the data. The user can also use the graphics module to visualize QGRS distribution patterns among all the alternative RNA products of a gene simultaneously on a single screen. QGRS Mapper can be accessed at http://bioinformatics.ramapo.edu/QGRS/.


Subject(s)
DNA/chemistry , Guanine/chemistry , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Software , Computer Graphics , G-Quadruplexes , Internet , Oligonucleotides/chemistry , RNA/chemistry , User-Computer Interface
7.
Nucleic Acids Res ; 30(8): 1842-50, 2002 Apr 15.
Article in English | MEDLINE | ID: mdl-11937639

ABSTRACT

Auxiliary factors likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We previously identified an auxiliary factor, hnRNP H/H', which stimulates 3'-end processing through an interaction with sequences downstream of the core elements of the SV40 late polyadenylation signal. Using in vitro reconstitution assays we have demonstrated that hnRNP H/H' can stimulate processing of two additional model polyadenylation signals by binding at similar relative downstream locations but with significantly different affinities. A short tract of G residues was determined to be a common property of all three hnRNP H/H' binding sites. A survey of mammalian polyadenylation signals identified potential G-rich hnRNP H/H' binding sites at similar downstream locations in approximately 34% of these signals. All of the novel G-rich elements tested were found to bind hnRNP H/H' protein and the processing of selected signals identified in the survey was stimulated by the protein both in vivo and in vitro. Downstream G-rich tracts, therefore, are a common auxiliary element in mammalian polyadenylation signals. Sequences capable of binding hnRNP H protein with varying affinities may play a role in determining the processing efficiency of a significant number of mammalian polyadenylation signals.


Subject(s)
Polyadenylation , Regulatory Sequences, Nucleic Acid , Ribonucleoproteins/metabolism , 3' Flanking Region , Animals , Base Sequence , Binding Sites , Cell Line , Conserved Sequence , Guanosine Triphosphate/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H , Heterogeneous-Nuclear Ribonucleoproteins , Mice , Molecular Sequence Data , Ribonucleoproteins/genetics , Transcriptional Activation , Uridine Triphosphate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...