Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Influenza Other Respir Viruses ; 17(6): e13149, 2023 06.
Article in English | MEDLINE | ID: mdl-37380175

ABSTRACT

BACKGROUND: We present post-vaccination nasal shedding findings from the phase IV, community-based, triple-blinded RCT conducted to assess efficacy of trivalent LAIV and inactivated influenza vaccines in rural north India. METHODS: Children aged 2-10 years received LAIV or intranasal placebo across 2015 and 2016, as per initial allocation. On days 2 and 4 post-vaccination, trained study nurses collected nasal swabs from randomly selected subset of trial participants based on operational feasibility, accounting for 10.0% and 11.4% of enrolled participants in 2015 and 2016, respectively. Swabs were collected in viral transport medium and transported under cold chain to laboratory for testing by reverse transcriptase real-time polymerase chain reaction. RESULTS: In year 1, on day 2 post-vaccination, 71.2% (74/104) of LAIV recipients shed at least one of vaccine virus strains compared to 42.3% (44/104) on day 4. During year 1, on day 2 post-vaccination, LAIV-A(H1N1)pdm09 was detected in nasal swabs of 12% LAIV recipients, LAIV-A(H3N2) in 41%, and LAIV-B in 59%. In year 2, virus shedding was substantially lower; 29.6% (32/108) of LAIV recipients shed one of the vaccine virus strains on day 2 compared to 21.3% on day 4 (23/108). CONCLUSION: At day 2 post-vaccination in year 1, two-thirds of LAIV recipients were shedding vaccine viruses. Shedding of vaccine viruses varied between strains and was lower in year 2. More research is needed to determine the reason for lower virus shedding and vaccine efficacy for LAIV-A(H1N1)pdm09.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Child , Humans , Influenza A Virus, H3N2 Subtype , Vaccination , Immunization , Vaccines, Attenuated , India
2.
Clin Kidney J ; 16(4): 611-618, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37007691

ABSTRACT

Obesity has continued to emerge as a worldwide pandemic and has been associated with a significant increase in associated comorbidities. These include well-known conditions such as hypertension and diabetes, as well as lesser-known conditions such as obesity-related glomerulopathy (ORG). The main etiology of ORG is podocyte damage, but contributing theories include dysfunctional renin-angiotensin-aldosterone system activation, hyperinsulinemia and lipid deposition. Recent advances have made strides in understanding the complex pathophysiology of ORG. The key to treating ORG is weight loss and proteinuria reduction. Lifestyle modification, pharmacological interventions and surgery are mainstays of management. A special focus on obese children is required, as childhood obesity tracks into adulthood and primary prevention is key. In this review we discuss the pathogenesis, clinical features and established and newer treatment modalities of ORG.

3.
Vaccine ; 41(5): 1009-1017, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36604216

ABSTRACT

Seasonal influenza epidemics cause significant pediatric mortality and morbidity worldwide. Live attenuated influenza vaccines (LAIVs) can be administered intranasally, induce a broad and robust immune response, demonstrate higher yields during manufacturing as compared to inactivated influenza vaccines (IIVs), and thereby represent an attractive possibility for young children in developing countries. We summarize recent pediatric studies evaluating LAIV efficacy in developing countries where a large proportion of the influenza-virus-associated respiratory disease burden occurs. Recently, two randomized controlled trials (RCTs) assessing Russian-backbone trivalent LAIV in children reported contradictory results; vaccine efficacy varied between Bangladesh (41 %) and Senegal (0.0 %) against all influenza viral strains. Prior to 2013, Ann Arbor-based LAIV demonstrated superior efficacy as compared to IIV. However, due to low effectiveness of the Ann Arbor-based LAIV against influenza A(H1N1)pdm09-like viruses, the CDC Advisory Committee on Immunization Practices (ACIP) recommended against the use of LAIV during the 2016-17 and 2017-18 influenza seasons. Reduced replicative fitness of the A(H1N1)pdm09 LAIV strains is thought to have led to the low effectiveness of the Ann-Arbor-based LAIV. Once the A(H1N1)pdm09 component was updated, the ACIP reintroduced the Ann-Arbor-based LAIV as a vaccine choice for the 2018-19 influenza season. In 2021, results from a 2-year RCT evaluating the Russian-backbone trivalent LAIV in rural north India reported that LAIV demonstrated significantly lower efficacy compared to IIV, but in Year 2, the vaccine efficacy for LAIV and IIV was comparable. A profounder understanding of the mechanisms underlying varied efficacy of LAIV in developing countries is warranted. Assessing replicative fitness, in addition to antigenicity, when selecting annual A(H1N1)pdm09 components in the Russian-backbone trivalent LAIVs is essential and may ultimately, enable widespread utility in resource-poor settings.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Child , Child, Preschool , Influenza, Human/epidemiology , Developing Countries , Influenza A Virus, H3N2 Subtype , Vaccines, Attenuated , Vaccines, Inactivated
4.
Drug Healthc Patient Saf ; 14: 147-159, 2022.
Article in English | MEDLINE | ID: mdl-36105663

ABSTRACT

Autosomal dominant polycystic kidney disease, also known as ADPKD, is the most common hereditary kidney disease, affecting different age groups. ADPKD can eventually lead to end-stage renal disease. The etiology of ADPKD is genetic, resulting in the formation of cysts containing fluids on the kidneys. Patients with ADPKD present a range of symptoms following a decline in kidney function. Pain, stones, proteinuria and osteoporosis are few of the many symptoms, resulting from decreased kidney function. Tolvaptan, a selective V2 receptor antagonist, is the etiological treatment used for ADPKD. In this paper, we conducted a systematic review of the literature between 2011 and 2021 to gather data regarding the tolerability and efficacy of tolvaptan use in ADPKD. A total of 22 trials were reviewed. Tolvaptan efficacy in the trials was measured using changes in eGFR or changes in total kidney volume. Results showed that tolvaptan use in ADPKD was associated with a slower decline in kidney function and a decrease in total kidney volume. Side effects of this drug include polyuria, nocturia and polydipsia along with hepatotoxicity. The two biggest trials, TEMPO and REPRISE, change in eGFR from pre-treatment baseline to post-treatment was 1.3 mL/min/1.73 for REPRISE and 1 mL/min/1.73 for TEMPO 3:4. A mean decrease of 49% in total kidney volume from baseline to post-treatment was found in the TEMPO 3:4 study.

5.
Front Immunol ; 13: 931210, 2022.
Article in English | MEDLINE | ID: mdl-36091034

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) an important form of a thrombotic microangiopathy (TMA) that can frequently lead to acute kidney injury (AKI). An important subset of aHUS is the anti-factor H associated aHUS. This variant of aHUS can occur due to deletion of the complement factor H genes, CFHR1 and CFHR3, along with the presence of anti-factor H antibodies. However, it is a point of interest to note that not all patients with anti-factor H associated aHUS have a CFHR1/R3 deletion. Factor-H has a vital role in the regulation of the complement system, specifically the alternate pathway. Therefore, dysregulation of the complement system can lead to inflammatory or autoimmune diseases. Patients with this disease respond well to treatment with plasma exchange therapy along with Eculizumab and immunosuppressant therapy. Anti-factor H antibody associated aHUS has a certain genetic predilection therefore there is focus on further advancements in the diagnosis and management of this disease. In this article we discuss the baseline characteristics of patients with anti-factor H associated aHUS, their triggers, various treatment modalities and future perspectives.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Complement System Proteins , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Antibodies/genetics , Antibodies/immunology , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/therapy , Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Complement Factor H/antagonists & inhibitors , Complement Factor H/genetics , Complement Factor H/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Humans , Plasma Exchange
6.
Blood ; 137(19): 2662-2675, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33569577

ABSTRACT

Patients with familial platelet disorder with a predisposition to myeloid malignancy (FPDMM) harbor germline monoallelic mutations in a key hematopoietic transcription factor, RUNX-1. Previous studies of FPDMM have focused on megakaryocyte (Mk) differentiation and platelet production and signaling. However, the effects of RUNX-1 haploinsufficiency on hematopoietic progenitor cells (HPCs) and subsequent megakaryopoiesis remains incomplete. We studied induced pluripotent stem cell (iPSC)-derived HPCs (iHPCs) and Mks (iMks) from both patient-derived lines and a wild-type (WT) line modified to be RUNX-1 haploinsufficient (RUNX-1+/-), each compared with their isogenic WT control. All RUNX-1+/- lines showed decreased iMk yield and depletion of an Mk-biased iHPC subpopulation. To investigate global and local gene expression changes underlying this iHPC shift, single-cell RNA sequencing was performed on sorted FPDMM and control iHPCs. We defined several cell subpopulations in the Mk-biased iHPCs. Analyses of gene sets upregulated in FPDMM iHPCs indicated enrichment for response to stress, regulation of signal transduction, and immune signaling-related gene sets. Immunoblot analyses in FPDMM iMks were consistent with these findings, but also identified augmented baseline c-Jun N-terminal kinase (JNK) phosphorylation, known to be activated by transforming growth factor-ß1 (TGF-ß1) and cellular stressors. These findings were confirmed in adult human CD34+-derived stem and progenitor cells (HSPCs) transduced with lentiviral RUNX1 short hairpin RNA to mimic RUNX-1+/-. In both iHPCs and CD34+-derived HSPCs, targeted inhibitors of JNK and TGF-ß1 pathways corrected the megakaryopoietic defect. We propose that such intervention may correct the thrombocytopenia in patients with FPDMM.


Subject(s)
Core Binding Factor Alpha 2 Subunit/deficiency , Hematopoietic Stem Cells/pathology , Megakaryocytes/pathology , Neoplastic Syndromes, Hereditary/pathology , Adult , Base Sequence , Core Binding Factor Alpha 2 Subunit/genetics , Flow Cytometry , Haploinsufficiency , Humans , Immunophenotyping , Induced Pluripotent Stem Cells/cytology , MAP Kinase Signaling System , Neoplastic Syndromes, Hereditary/genetics , Platelet Glycoprotein GPIb-IX Complex/analysis , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Signal Transduction , Single-Cell Analysis , Thrombopoiesis , Transforming Growth Factor beta1/physiology
7.
Blood Adv ; 4(6): 1145-1158, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32208490

ABSTRACT

RUNX1 is frequently mutated in myeloid and lymphoid malignancies. It has been shown to negatively regulate Toll-like receptor 4 (TLR4) signaling through nuclear factor κB (NF-κB) in lung epithelial cells. Here we show that RUNX1 regulates TLR1/2 and TLR4 signaling and inflammatory cytokine production by neutrophils. Hematopoietic-specific RUNX1 loss increased the production of proinflammatory mediators, including tumor necrosis factor-α (TNF-α), by bone marrow neutrophils in response to TLR1/2 and TLR4 agonists. Hematopoietic RUNX1 loss also resulted in profound damage to the lung parenchyma following inhalation of the TLR4 ligand lipopolysaccharide (LPS). However, neutrophils with neutrophil-specific RUNX1 loss lacked the inflammatory phenotype caused by pan-hematopoietic RUNX1 loss, indicating that dysregulated TLR4 signaling is not due to loss of RUNX1 in neutrophils per se. Rather, single-cell RNA sequencing indicates the dysregulation originates in a neutrophil precursor. Enhanced inflammatory cytokine production by neutrophils following pan-hematopoietic RUNX1 loss correlated with increased degradation of the inhibitor of NF-κB signaling, and RUNX1-deficient neutrophils displayed broad transcriptional upregulation of many of the core components of the TLR4 signaling pathway. Hence, early, pan-hematopoietic RUNX1 loss de-represses an innate immune signaling transcriptional program that is maintained in terminally differentiated neutrophils, resulting in their hyperinflammatory state. We hypothesize that inflammatory cytokine production by neutrophils may contribute to leukemia associated with inherited RUNX1 mutations.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Neutrophils , Core Binding Factor Alpha 2 Subunit/genetics , NF-kappa B/metabolism , Neutrophils/metabolism , Signal Transduction , Toll-Like Receptors
8.
Virology ; 498: 9-22, 2016 11.
Article in English | MEDLINE | ID: mdl-27529294

ABSTRACT

Chronic HBV infection is a risk factor for hepatocellular carcinoma (HCC). The HBV HBx protein stimulates HBV replication and likely influences the development of HBV-associated HCC. Whether HBx affects regulators of metabolism in normal hepatocytes has not been addressed. We used an ex vivo, cultured primary rat hepatocyte system to assess the interplay between HBV replication and mechanistic target of rapamycin complex 1 (mTORC1) signaling. HBx activated mTORC1 signaling; however, inhibition of mTORC1 enhanced HBV replication. HBx also decreased ATP levels and activated the energy-sensing factor AMP-activated protein kinase (AMPK). Inhibition of AMPK decreased HBV replication. Inhibition of AMPK activates mTORC1, and we showed that activated mTORC1 is one factor that reduces HBV replication when AMPK is inhibited. HBx activation of both AMPK and mTORC1 suggests that these activities could provide a balancing mechanism to facilitate persistent HBV replication. HBx activation of mTORC1 and AMPK could also influence HCC development.


Subject(s)
Hepatitis B virus/physiology , Hepatocytes/metabolism , Hepatocytes/virology , Metabolic Networks and Pathways , Trans-Activators/metabolism , Virus Replication , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Hepatitis B/metabolism , Hepatitis B/virology , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/metabolism , Protein Binding , Rats , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Viral Regulatory and Accessory Proteins
9.
Hepatoma Res ; 2: 163-186, 2016.
Article in English | MEDLINE | ID: mdl-28042609

ABSTRACT

As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.

10.
Methods Mol Biol ; 1170: 165-227, 2014.
Article in English | MEDLINE | ID: mdl-24906315

ABSTRACT

To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.


Subject(s)
Cell Cycle , DNA Viruses/physiology , Host-Pathogen Interactions , Virus Diseases/pathology , Virus Diseases/virology , Animals , Humans , Virus Diseases/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...