Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Exp Orthop ; 11(3): e12056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911188

ABSTRACT

Purpose: To investigate the level of cellular senescence in stem cells derived from microfragmented abdominal adipose tissue harvested from patients with knee osteoarthritis (OA). Methods: Stem cells harvested from microfragmented abdominal adipose tissue from 20 patients with knee OA, aged 29-65 years (mean = 49.8, SD = 9.58), were analysed as a function of patient age and compared with control cells exhibiting signs of cellular senescence. Steady-state mRNA levels of a panel of genes associated with senescence were measured by qPCR. Intracellular senescence-associated proteins p16 and p21, and senescence-associated ß-galactosidase activity were measured by flow cytometry. Cellular proliferation was assessed using a 5-ethynyl-2'-deoxyuridine proliferation assay. Stemness was assessed by stem cell surface markers using flow cytometry and the capacity to undergo adipogenic and osteogenic differentiation in vitro. Results: No correlation was found between cellular senescence levels of the microfragmented adipose tissue-derived stem cells and patient age for any of the standard assays used to quantify senescence. The level of cellular senescence was generally low across all senescence-associated assays compared to the positive senescence control. Stemness was verified for all samples. An increased capacity to undergo adipogenic differentiation was shown with increasing patient age (p = 0.02). No effect of patient age was found for osteogenic differentiation. Conclusions: Autologous microfragmented adipose tissue-derived stem cells may be used in clinical trials of knee OA of patients aged 29-65 years, at least until passage 4, as they show stemness potential and negligible senescence in vitro. Level of Evidence: Not applicable.

2.
Ugeskr Laeger ; 186(1)2024 01 01.
Article in Danish | MEDLINE | ID: mdl-38235773

ABSTRACT

Intraarticular treatment of osteoarthritis with mesenchymal stem cells (MSCs) has shown promising results and is being increasingly implemented in the clinic. Autologous MSCs are the primary source of therapy but issues related to cell expansion, patient age, and acute therapies have opened a need for allogenic MSCs. Problematic immunological reactions such as pain, joint swelling, urticarial, and MSC destruction are, however, reported when using allogenic MSCs at the first to second treatment. Multiple factors need to be considered when deciding on autologous or allogenic MSC treatment, as argued in this review.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis , Humans , Mesenchymal Stem Cell Transplantation/methods , Osteoarthritis/therapy , Pain
3.
J Exp Orthop ; 10(1): 31, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36952141

ABSTRACT

PURPOSE: To investigate if viable stem cells could be isolated and expanded from cryopreserved microfragmented adipose tissue (AT) harvested from patients with knee osteoarthritis. METHODS: Microfragmented abdominal AT from knee osteoarthritis patients was cryopreserved at -80 °C in cryoprotectant-medium. The samples were thawed for stem cell isolation by tissue explant culture (TEC) and enzymatic digestion (ED), respectively. Viability, population doublings, and doubling time were assessed by trypan blue staining and flow cytometry. Cell type and senescence-associated ß-galactosidase activity were analyzed by flow cytometry. Osteogenic and adipogenic differentiation was assessed quantitatively by Alizarin-Red-S and Oil-Red-O staining, respectively. RESULTS: Microfragmented AT from 7 patients was cryopreserved for a period of 46-150 days (mean (SD) 115.9 days (44.3 days)). Viable stem cells were successfully recovered and expanded from all patients using both isolation methods with no significant difference in viable population doublings or doubling time from passage 1 to 3 (p > 0.05). Low levels of senescence-associated ß-galactosidase activity was detected for both methods with no significant difference between TEC and ED (p = 0.17). Stemness was verified by stem cell surface markers and osteogenic and adipogenic differentiation performance. Adventitial stem cells (CD31-CD34+CD45-CD90+CD146-), pericytes (CD31-CD34-CD45-CD90+CD146+), transitional pericytes (CD31-CD34+CD45-CD90+CD146+), and CD271+ stem cells (CD31-CD45-CD90+CD271+) were identified using both methods. More pericytes were present when using TEC (25% (24%)) compared to ED (3% (2%)) at passage 4 (p = 0.04). CONCLUSIONS: Viable stem cells can be isolated and expanded from cryopreserved microfragmented AT using both TEC and ED. TEC provides more clinically relevant pericytes than ED.

4.
BMC Vet Res ; 18(1): 388, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329434

ABSTRACT

BACKGROUND: Bone marrow (BM)- and adipose tissue (AT)-derived mesenchymal stromal cells (MSCs) have shown potential as cell-based therapies for cartilage and bone injuries and are used increasingly in human and veterinary practice to facilitate the treatment of orthopedic conditions. However, human and rodent studies have documented a sharp decline in chondrogenic and osteogenic differentiation potential with increasing donor age, which may be problematic for the important demographic of older orthopedic patients. The aim of this study was to identify the effect of donor age on the chondrogenic and osteogenic differentiation performance of equine BM- and AT-MSCs in vitro. BM- and AT-MSCs and dermal fibroblasts (biological negative control) were harvested from horses in five different age groups (n = 4, N = 60); newborn (0 days), yearling (15-17 months), adult (5-8 years), middle-aged (12-18 years), and geriatric (≥ 22 years). Chondrogenic differentiation performance was assessed quantitatively by measuring pellet size, matrix proteoglycan levels, and gene expression of articular cartilage biomarkers. Osteogenic differentiation performance was assessed quantitatively by measuring alkaline phosphatase activity, calcium deposition, and gene expression of bone biomarkers. RESULTS: Chondrogenic and osteogenic differentiation performance of equine BM- and AT-MSCs declined with increasing donor age. BM-MSCs had a higher chondrogenic differentiation performance. AT-MSCs showed minimal chondrogenic differentiation performance in all age groups. For osteogenesis, alkaline phosphatase activity was also higher in BM-MSCs, but BM-MSCs calcium deposition was affected by donor age earlier than AT-MSCs. Chondrogenic and osteogenic differentiation performance of BM-MSCs exhibited a decline as early as between the newborn and yearling samples. Steady state levels of mRNA encoding growth factors, chondrogenic, and osteogenic biomarkers were lower with increasing donor age in both MSC types. CONCLUSIONS: The data showed that chondrogenic and osteogenic differentiation performance of equine BM-MSCs declined already in yearlings, and that AT-MSCs showed minimal chondrogenic potential, but were affected later by donor age with regards to osteogenesis (calcium deposition). The results highlight the importance of donor age considerations and MSC selection for cell-based treatment of orthopedic injuries and will help inform clinicians on when to implement or potentially cryopreserve cells. Moreover, the study provides molecular targets affected by donor age.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Horses , Humans , Animals , Bone Marrow , Alkaline Phosphatase , Calcium/metabolism , Cells, Cultured , Cell Differentiation , Bone Marrow Cells
5.
Front Vet Sci ; 7: 602403, 2020.
Article in English | MEDLINE | ID: mdl-33363241

ABSTRACT

Background: Bone marrow (BM)- and adipose tissue (AT)-derived mesenchymal stem cells (MSCs) are used increasingly for autologous cell therapy in equine practice to treat musculoskeletal and other injuries. Current recommendations often call for 10-100 million MSCs per treatment, necessitating the expansion of primary cells in culture prior to therapeutic use. Of concern, human and rodent studies have shown a decline of both MSC recovery from sampled tissue and in vitro proliferative capacity with increasing donor age. This may be problematic for applications of autologous cell-based therapies in the important equine demographic of older patients. Objectives: To investigate the effect of donor age on the cellular proliferation of equine BM- and AT-MSCs. Study Design: In vitro study. Methods: BM- and AT-MSCs and dermal fibroblasts (biological control) were harvested from horses in five different age groups (n = 4, N = 60); newborn (0 days), yearling (15-17 months), adult (5-8 years), middle-aged (12-18 years), and geriatric (≥22 years). Proliferation of the cells was tested using an EdU incorporation assay and steady state mRNA levels measured for targeted proliferation, aging, and senescence biomarkers. Results: The cellular proliferation of equine BM- and AT-MSCs declined significantly in the geriatric cohort relative to the younger age groups. Proliferation levels in the two MSC types were equally affected by donor age. Analysis of steady state mRNA levels showed an up-regulation in tumor suppressors, apoptotic genes, and multiple growth factors in MSCs from old horses, and a down-regulation of some pro-cycling genes with a few differences between cell types. Main Limitations: Potential age-dependent differences in cell function parameters relevant to cell-therapy application were not investigated. Conclusions: The cellular proliferation of equine BM- and AT-MSCs declined at advanced donor ages. High levels of in vitro proliferation were observed in both MSC types from horses in the age groups below 18 years of age.

SELECTION OF CITATIONS
SEARCH DETAIL
...