Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Netw Neurosci ; 8(3): 965-988, 2024.
Article in English | MEDLINE | ID: mdl-39355437

ABSTRACT

This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.


Modeling large-scale brain dynamics offers insight into the main principles of brain self-organization. In particular, the identification of traces of nonequilibrium steady-state dynamics also at the mascroscale level has been recently linked to the presence of intrinsic brain networks. Quantifying these aspects is generally limited by numerical difficulties. However, for resting-state BOLD data, a linear stochastic state-space model has demonstrated efficacy, simplifying analysis. Specifically, the asymmetric structure of effective connectivity, that is, the state interaction matrix, directly reflects nonequilibrium steady-state dynamics and time-irreversibility. By disentangling this asymmetry, we quantified departure from equilibrium and discerned primary directions of information propagation, identifying brain regions as sources or sinks.

2.
Nat Commun ; 13(1): 4721, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953467

ABSTRACT

Oscillatory activity is ubiquitous in natural and engineered network systems. The interaction scheme underlying interdependent oscillatory components governs the emergence of network-wide patterns of synchrony that regulate and enable complex functions. Yet, understanding, and ultimately harnessing, the structure-function relationship in oscillator networks remains an outstanding challenge of modern science. Here, we address this challenge by presenting a principled method to prescribe exact and robust functional configurations from local network interactions through optimal tuning of the oscillators' parameters. To quantify the behavioral synchrony between coupled oscillators, we introduce the notion of functional pattern, which encodes the pairwise relationships between the oscillators' phases. Our procedure is computationally efficient and provably correct, accounts for constrained interaction types, and allows to concurrently assign multiple desired functional patterns. Further, we derive algebraic and graph-theoretic conditions to guarantee the feasibility and stability of target functional patterns. These conditions provide an interpretable mapping between the structural constraints and their functional implications in oscillator networks. As a proof of concept, we apply the proposed method to replicate empirically recorded functional relationships from cortical oscillations in a human brain, and to redistribute the active power flow in different models of electrical grids.


Subject(s)
Brain , Brain/physiology , Humans
3.
Nat Commun ; 12(1): 1429, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658486

ABSTRACT

Our ability to manipulate the behavior of complex networks depends on the design of efficient control algorithms and, critically, on the availability of an accurate and tractable model of the network dynamics. While the design of control algorithms for network systems has seen notable advances in the past few years, knowledge of the network dynamics is a ubiquitous assumption that is difficult to satisfy in practice. In this paper we overcome this limitation, and develop a data-driven framework to control a complex network optimally and without any knowledge of the network dynamics. Our optimal controls are constructed using a finite set of data, where the unknown network is stimulated with arbitrary and possibly random inputs. Although our controls are provably correct for networks with linear dynamics, we also characterize their performance against noisy data and in the presence of nonlinear dynamics, as they arise in power grid and brain networks.


Subject(s)
Brain/physiology , Computational Biology/methods , Brain/diagnostic imaging , Connectome , Electric Power Supplies , Humans , Magnetic Resonance Imaging , Nerve Net , Neural Networks, Computer , New England , Nonlinear Dynamics
4.
Sci Adv ; 6(22): eaba2282, 2020 May.
Article in English | MEDLINE | ID: mdl-32518824

ABSTRACT

In both natural and engineered systems, communication often occurs dynamically over networks ranging from highly structured grids to largely disordered graphs. To use, or comprehend the use of, networks as efficient communication media requires understanding of how they propagate and transform information in the face of noise. Here, we develop a framework that enables us to examine how network structure, noise, and interference between consecutive packets jointly determine transmission performance in complex networks governed by linear dynamics. Mathematically, normal networks, which can be decomposed into separate low-dimensional information channels, suffer greatly from readout noise. Most details of their wiring have no impact on transmission quality. Non-normal networks, however, can largely cancel the effect of noise by transiently amplifying select input dimensions while ignoring others, resulting in higher net information throughput. Our theory could inform the design of new communication networks, as well as the optimal use of existing ones.

5.
Article in English | MEDLINE | ID: mdl-31327889

ABSTRACT

Reliable information processing is a hallmark of many physical and biological networked systems. In this paper, we propose a novel framework for modelling information transmission within a linear dynamical network. Information propagation is modelled by means of a digital communication protocol that takes into account the realistic phenomenon of inter-symbol interference. Building on this framework, we adopt Shannon information rate to quantify the amount of information that can be reliably sent over the network within a fixed time window. We investigate how the latter information metric is affected by the connectivity structure of the network. Here, we focus in particular on networks characterized by a normal adjacency matrix. We show that for such networks the maximum achievable information rate depends only on the spectrum of the adjacency matrix. We then provide numerical results suggesting that non-normal network architectures could benefit information transmission in our framework.

SELECTION OF CITATIONS
SEARCH DETAIL