Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 49(45): 9911-21, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20863064

ABSTRACT

Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO(4)(2-) concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enzyme purified from cells grown with 4.5 µM WO(4)(2-) contains W as the metal cofactor but is otherwise identical to the Mo-Nar previously purified from P. aerophilum grown at low WO(4)(2-) concentrations. W is coordinated by a bis-molybdopterin guanine dinucleotide cofactor. The W-Nar has a 2-fold lower turnover number (633 s(-1)) but the same K(m) value for nitrate (56 µM) as the Mo-Nar. Quinol reduction and nitrate oxidation experiments monitored by EPR with both pure W-Nar and mixed W- and Mo-Nar preparations suggest a monodentate ligation by the conserved Asp241 for W(V), while Asp241 acts as a bidentate ligand for Mo(V). Redox titrations of the Mo-Nar revealed a midpoint potential of 88 mV for Mo(V/IV). The E(m) for W(V/IV) of the purified W-Nar was estimated to be -8 mV. This relatively small difference in midpoint potential is consistent with comparable enzyme activities of W- and Mo-Nars. Unlike bacterial Nars, the P. aerophilum Nar contains a unique membrane anchor, NarM, with a single heme of the o(P) type (E(m) = 126 mV). In contrast to bacterial Nars, the P. aerophilum Nar faces the cell's exterior and, hence, does not contribute to the proton motive force. Formate is used as a physiological electron donor. This is the first description of an active W-containing Nar demonstrating the unique ability of hyperthermophiles to adapt to their high-WO(4)(2-) environment.


Subject(s)
Nitrate Reductase/metabolism , Nitrite Reductases/metabolism , Pyrobaculum/enzymology , Tungsten/pharmacology , Acclimatization , Catalytic Domain , Electron Spin Resonance Spectroscopy , Environment , Kinetics , Mass Spectrometry , Nitrate Reductase/isolation & purification , Nitrite Reductases/isolation & purification , Oxidation-Reduction , Protein Subunits/isolation & purification , Protein Subunits/metabolism , Pyrobaculum/drug effects , Pyrobaculum/growth & development , Tungsten/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...