Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534324

ABSTRACT

Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.


Subject(s)
Cannabinoids , Neoplasms , Cannabinoid Receptor Agonists/pharmacology , Matrix Metalloproteinase 9/metabolism , Vimentin/metabolism , Ligands , Glycosylation , Neuraminidase/metabolism , Receptors, G-Protein-Coupled/metabolism , Cannabinoids/pharmacology , Epithelial-Mesenchymal Transition , Cadherins/metabolism
2.
Curr Probl Cardiol ; 49(1 Pt C): 102106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37741599

ABSTRACT

Postoperative atrial fibrillation (POAF) is a common complication after cardiac surgery, increasing the risk for adverse outcomes such as perioperative and long-term mortality, stroke, myocardial infarction, and other thromboembolic events. Epigenetic biomarkers show promise as prognostic tools for POAF. Epigenetic changes, such as DNA methylation, histone modification, and microRNAs (miRNA), can result in altered gene expression and the development of various pathological conditions. This systematic review aims to present the current literature on the association between various epigenetic markers and the development of POAF following cardiac surgery. Here, an electronic literature search was performed using MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and Google Scholar to identify studies that reported the role of epigenetic markers in the development of POAF. Five of the 6 studies focused on miRNAs and their association with POAF. In POAF patients, the expression of miR-1 and miR-483-5p were upregulated in the right atrial appendage (RAA), while the levels of miR-133A, miR-208a, miR-23a, miR-26a, miR-29a, miR-29b, and miR-29c were decreased in the RAA and venous blood. One study examined cytosines followed by guanines (CpGs) as DNA methylation markers. Across all studies, 488 human subjects who had undergone cardiac surgery were investigated, and 195 subjects (39.9%) developed new-onset POAF. The current literature suggests that miRNAs may play a role in predicting the development of atrial fibrillation after cardiac surgery. However, more robust clinical data are required to justify their role in routine clinical practice.


Subject(s)
Atrial Fibrillation , Cardiac Surgical Procedures , MicroRNAs , Humans , Atrial Fibrillation/etiology , Atrial Fibrillation/genetics , Cardiac Surgical Procedures/adverse effects , Epigenesis, Genetic , MicroRNAs/genetics , Prognosis , Risk Factors
3.
Cells ; 12(23)2023 12 04.
Article in English | MEDLINE | ID: mdl-38067195

ABSTRACT

Surgery-induced tumor growth acceleration and synchronous metastatic growth promotion have been observed for decades. Surgery-induced wound healing, orchestrated through growth factors, chemokines, and cytokines, can negatively impact patients harboring residual or metastatic disease. We provide detailed clinical evidence of this process in surgical breast, prostate, and colorectal cancer patients. Plasma samples were analyzed from 68 cancer patients who had not received treatment before surgery or adjuvant therapy until at least four weeks post-surgery. The levels of plasma cytokines, chemokines, and growth factors were simultaneously quantified and profiled using multiplexed immunoassays for eight time points sampled per patient. The immunologic processes are induced immediately after surgery in patients, characterized by a drastic short-term shift in the expression levels of pro-inflammatory and angiogenic molecules and cytokines. A rapid and significant spike in circulating plasma levels of hepatocyte growth factor (HGF), interleukin-6 (IL-6), placental growth factor (PLGF), and matrix metalloproteinase-9 (MMP-9) after surgery was noted. The rise in these molecules was concomitant with a significant drop in transforming growth factor-ß1 (TGF-ß1), platelet-derived growth factor (PDGF-AB/BB), insulin-like growth factor-1 (IGF-1), and monocyte chemoattractant protein-2 (MCP-2). If not earlier, each plasma analyte was normalized to baseline levels within 1-2 weeks after surgery, suggesting that surgical intervention alone was responsible for these effects. The effects of surgical tumor removal on disrupting the pro-inflammatory and angiogenic plasma profiles of cancer patients provide evidence for potentiating malignant progression. Our findings indicate a narrow therapeutic window of opportunity after surgery to prevent disease recurrence.


Subject(s)
Colorectal Neoplasms , Prostatic Neoplasms , Male , Humans , Placenta Growth Factor , Neoplasm Recurrence, Local , Chemokines , Prostatic Neoplasms/surgery , Colorectal Neoplasms/pathology
4.
Viruses ; 15(10)2023 10 12.
Article in English | MEDLINE | ID: mdl-37896856

ABSTRACT

Mutations and the glycosylation of epitopes can convert immunogenic epitopes into non-immunogenic ones via natural selection or evolutionary pressure, thereby decreasing their sensitivity to neutralizing antibodies. Based on Thomas Francis's theory, memory B and T cells induced during primary infections or vaccination will freeze the new mutated epitopes specific to naïve B and T cells from the repertoire. On this basis, some researchers argue that the current vaccines derived from the previous strains of the SARS-CoV-2 virus do not increase immunity and may also prevent the immune response against new epitopes. However, evidence shows that even if the binding affinity is reduced, the previous antibodies or T cell receptors (TCRs) can still bind to this new epitope of the Beta, Gamma, and Delta variant if their concentration is high enough (from a booster injection) and neutralize the virus. This paper presents some convincing immunological reasons that may challenge this theory and argue for the continuation of universal vaccination to prevent further mutations of the SARS-CoV-2 virus. Simultaneously, the information presented can be used to develop vaccines that target novel epitopes or create new recombinant drugs that do not lose their effectiveness when the virus mutates.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing , Epitopes , Polysaccharides , Spike Glycoprotein, Coronavirus/genetics
5.
Biomedicines ; 11(8)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37626639

ABSTRACT

Our understanding of angiogenesis has significantly expanded over the past five decades. More recently, research has focused on this process at a more molecular level, looking at it through the signaling pathways that activate it and its non-direct downstream effects. This review discusses current findings in molecular angiogenesis, focusing on its impact on the immune system. Moreover, the impairment of this process in cancer progression and metastasis is highlighted, and current anti-angiogenic treatments and their effects on tumor growth are discussed.

6.
Cancers (Basel) ; 15(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37444578

ABSTRACT

Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.

7.
Cells ; 12(8)2023 04 20.
Article in English | MEDLINE | ID: mdl-37190108

ABSTRACT

Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.


Subject(s)
Neoplasms , Pentoxifylline , Animals , Humans , Pentoxifylline/pharmacology , Adenosine
8.
Biomolecules ; 13(5)2023 05 09.
Article in English | MEDLINE | ID: mdl-37238677

ABSTRACT

Since the discovery of insulin over 100 years ago, our understanding of the insulin signaling pathway has greatly expanded [...].


Subject(s)
Receptor, Insulin , Signal Transduction , Receptor, Insulin/metabolism , Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...