Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Jundishapur J Microbiol ; 9(7): e35452, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27800127

ABSTRACT

BACKGROUND: Aflatoxins are highly toxic secondary metabolites mainly produced by Aspergillus parasiticus. This species can contaminate a wide range of agricultural commodities, including cereals, peanuts, and crops in the field. In recent years, research on medicinal herbs, such as Pistacia atlantica subsp. kurdica, have led to reduced microbial growth, and these herbs also have a particular effect on the production of aflatoxins as carcinogenic compounds. OBJECTIVES: In this study, we to examine P. atlantica subsp. kurdica as a natural compound used to inhibit the growth of A. parasiticus and to act as an anti-mycotoxin. MATERIALS AND METHODS: In vitro antifungal susceptibility testing of P. atlantica subsp. kurdica for A. parasiticus was performed according to CLSI document M38-A2. The rate of aflatoxin production was determined using the HPLC technique after exposure to different concentrations (62.5 - 125 mg/mL) of the gum. The changes in expression levels of the aflR gene were analyzed with a quantitative real-time PCR assay. RESULTS: The results showed that P. atlantica subsp. kurdica can inhibit A. parasiticus growth at a concentration of 125 mg/mL. HPLC results revealed a significant decrease in aflatoxin production with 125 mg/mL of P. atlantica subsp. kurdica, and AFL-B1 production was entirely inhibited. Based on quantitative real-time PCR results, the rate of aflR gene expression was significantly decreased after treatment with P. atlantica subsp. kurdica. CONCLUSIONS: Pistacia atlantica subsp. kurdica has anti-toxic properties in addition to an inhibitory effect on A. parasiticus growth, and is able to decrease aflatoxin production effectively in a dose-dependent manner. Therefore, this herbal extract maybe considered a potential anti-mycotoxin agent in medicine or industrial agriculture.

2.
Adv Med ; 2016: 9242031, 2016.
Article in English | MEDLINE | ID: mdl-27642628

ABSTRACT

Aims. Biofilms formed by Candida species which associated with drastically enhanced resistance against most antimicrobial agents. The aim of this study was to identify and determine the antifungal susceptibility pattern of Candida species isolated from endotracheal tubes from ICU patients. Methods. One hundred forty ICU patients with tracheal tubes who were intubated and mechanically ventilated were surveyed for endotracheal tube biofilms. Samples were processed for quantitative microbial culture. Yeast isolates were identified to the species level based on morphological characteristics and their identity was confirmed by PCR-RFLP. Antifungal susceptibility testing was determined according to CLSI document (M27-A3). Results. Ninety-five strains of Candida were obtained from endotracheal tubes of which C. albicans (n = 34; 35.7%) was the most frequently isolated species followed by other species which included C. glabrata (n = 24; 25.2%), C. parapsilosis (n = 16; 16.8%), C. tropicalis (n = 12; 12.6%), and C. krusei (n = 9; 9.4%). The resulting MIC90 for all Candida species were in increasing order as follows: caspofungin (0.5 µg/mL); amphotericin B (2 µg/mL); voriconazole (8.8 µg/mL); itraconazole (16 µg/mL); and fluconazole (64 µg/mL). Conclusion. Candida species recovered from endotracheal tube are the most susceptible to caspofungin.

SELECTION OF CITATIONS
SEARCH DETAIL
...