Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 6: 823-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26937455

ABSTRACT

Isoniazid (INH) is one of the first-line anti-tuberculosis drugs. Its effect on oxidative stress, however, is unknown. Here we used a model of oxidative stress by employing glucose/glucose oxidase (GOx), which (based on the availability of glucose and oxygen) is known to produce H2O2. This reaction induces oxidative stress culminating in necrotic cell death in HL-60 cells (a human promyelocytic leukemia cell line). The changes in protein levels have been quantified using global proteome expression changes through stable isotope labeling by amino acids in cell culture (SILAC) followed by LC-MS/MS analysis. A total of 1459 and 1712 proteins were identified in forward and reverse experiments, respectively. However, only 390 proteins were reproducibly identified in both samples. These 390 proteins were taken into account for further analysis which has been described in "Cytoprotective effect of isoniazid against H2O2 derived injury in HL-60 cells" [1].

2.
Chem Biol Interact ; 244: 37-48, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26658028

ABSTRACT

To combat tuberculosis (TB), host phagocytic cells need to survive against self-generating oxidative stress-induced necrosis. However, the effect of isoniazid (INH) in protecting cells from oxidative stress-induced necrosis has not been previously investigated. In this in vitro study, the cytotoxic effect of H2O2 generation using glucose oxidase (a model of oxidative stress) was found to be abrogated by INH in a concentration-dependent manner in HL-60 cells (a human promyelocytic leukemia cell). In cells treated with glucose oxidase, both ATP and mitochondrial membrane potential were found to be decreased. However, treatment with INH demonstrated small but significant attenuation in decreasing ATP levels, and complete reversal for the decrease in mitochondrial membrane potential. Quantitative proteomics analysis identified up-regulation of 15 proteins and down-regulation of 14 proteins which all together suggest that these proteomic changes signal for increasing cellular replication, structural integrity, ATP synthesis, and inhibiting cell death. In addition, studies demonstrated that myeloperoxidase (MPO) was involved in catalyzing INH-protein adduct formation. Unexpectedly, these covalent protein adducts were correlated with INH-induced cytoprotection in HL-60 cells. Further studies are needed to determine whether the INH-protein adducts were causative in the mechanism of cytoprotection.


Subject(s)
Cytoprotection/drug effects , Hydrogen Peroxide/pharmacology , Isoniazid/pharmacology , Cell Death/drug effects , Dose-Response Relationship, Drug , HL-60 Cells , Humans , Necrosis/chemically induced , Necrosis/prevention & control , Oxidative Stress/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured
3.
Chem Biol Interact ; 239: 129-38, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26102013

ABSTRACT

In this study, the cellular effects resulting from the metabolism of aminoglutethimide by myeloperoxidase were investigated. Human promyelocytic leukemia (HL-60) cells were treated with aminoglutethimide (AG), an arylamine drug that has a risk of adverse drug reactions, including drug-induced agranulocytosis. HL-60 cells contain abundant amounts of myeloperoxidase (MPO), a hemoprotein, which catalyzes one-electron oxidation of arylamines using H2O2 as a cofactor. Previous studies have shown that arylamine metabolism by MPO results in protein radical formation. The purpose of this study was to determine if pathways associated with a toxic response could be determined from conditions that produced protein radicals. Conditions for AG-induced protein radical formation (with minimal cytotoxicity) were optimized, and these conditions were used to carry out proteomic studies. We identified 43 proteins that were changed significantly upon AG treatment among which 18 were up-regulated and 25 were down-regulated. The quantitative proteomic data showed that AG peroxidative metabolism led to the down-regulation of critical anti-apoptotic proteins responsible for inhibiting the release of pro-apoptotic factors from the mitochondria as well as cytoskeletal proteins such as nuclear lamina. This overall pro-apoptotic response was confirmed with flow cytometry which demonstrated apoptosis to be the main mode of cell death, and this was attenuated by MPO inhibition. This response correlated with the intensity of AG-induced protein radical formation in HL-60 cells, which may play a role in cell death signaling mechanisms.


Subject(s)
Aminoglutethimide/pharmacology , Apoptosis/drug effects , Free Radicals/metabolism , Peroxidase/metabolism , Proteins/metabolism , Cell Survival/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Glucose/pharmacology , Glucose Oxidase/pharmacology , HL-60 Cells/drug effects , HL-60 Cells/metabolism , Humans , Proteomics/methods
4.
Drug Discov Today ; 19(5): 562-78, 2014 May.
Article in English | MEDLINE | ID: mdl-24216320

ABSTRACT

In drug discovery and development (DDD), the efficacy, safety and cost of new chemical entities are the main concerns of the pharmaceutical industry. Continuously updated and stricter recommendations imposed by regulatory authorities result in greater challenges being faced by the industry. Reliable high-throughput techniques integrated with well-designed analytical tools at all stages of DDD (termed 'next-generation DDD') could be a possible approach to obtaining new drug approval by cutting costs as well as ensuring the highest level of patient safety. In this review, we describe the various components of holistic toxicogenomics with examples of applications, and discuss the various analytical tools and platforms to illustrate the current status and prospects of next-generation DDD.


Subject(s)
Drug Discovery/methods , Drug Discovery/trends , Toxicogenetics/methods , Toxicogenetics/trends , Animals , Clinical Trials as Topic/methods , Clinical Trials as Topic/trends , Forecasting , Humans
5.
Chem Res Toxicol ; 26(12): 1872-83, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24191655

ABSTRACT

We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction is proposed between aminocarboxylates and arylamine free radicals via the carboxylic group-linked tertiary nitrogen of the deprotonated amino acid derivatives. These findings may have significant implications for the biological fate of arylamine xenobiotic and drug free-radical metabolites.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Aniline Compounds/metabolism , Free Radical Scavengers/metabolism , Free Radicals/metabolism , Pharmaceutical Preparations/metabolism , Xenobiotics/toxicity , Aniline Compounds/chemistry , Electron Transport , Free Radical Scavengers/chemistry , Free Radicals/chemistry , HL-60 Cells , Humans , Molecular Structure , Pharmaceutical Preparations/chemistry , Tumor Cells, Cultured , Xenobiotics/chemistry , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...