Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
JAMA Pediatr ; 178(4): 391-400, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38372989

ABSTRACT

Importance: Appendicitis is the most common indication for urgent surgery in the pediatric population, presenting across a range of severity and with variable complications. Differentiating simple appendicitis (SA) and perforated appendicitis (PA) on presentation may help direct further diagnostic workup and appropriate therapy selection, including antibiotic choice and timing of surgery. Objective: To provide a mechanistic understanding of the differences in disease severity of appendicitis with the objective of developing improved diagnostics and treatments, specifically for the pediatric population. Design, Setting, and Participants: The Gene Expression Profiling of Pediatric Appendicitis (GEPPA) study was a single-center prospective exploratory diagnostic study with transcriptomic profiling of peripheral blood collected from a cohort of children aged 5 to 17 years with abdominal pain and suspected appendicitis between November 2016 and April 2017 at the Alberta Children's Hospital in Calgary, Alberta, Canada, with data analysis reported in August 2023. There was no patient follow-up in this study. Exposure: SA, PA, or nonappendicitis abdominal pain. Main Outcomes and Measures: Blood transcriptomics was used to develop a hypothesis of underlying mechanistic differences between SA and PA to build mechanistic hypotheses and blood-based diagnostics. Results: Seventy-one children (mean [SD] age, 11.8 [3.0] years; 48 [67.6%] male) presenting to the emergency department with abdominal pain and suspected appendicitis were investigated using whole-blood transcriptomics. A central role for immune system pathways was revealed in PA, including a dampening of major innate interferon responses. Gene expression changes in patients with PA were consistent with downregulation of immune response and inflammation pathways and shared similarities with gene expression signatures derived from patients with sepsis, including the most severe sepsis endotypes. Despite the challenges in identifying early biomarkers of severe appendicitis, a 4-gene signature that was predictive of PA compared to SA, with an accuracy of 85.7% (95% CI, 72.8-94.1) was identified. Conclusions: This study found that PA was complicated by a dysregulated immune response. This finding should inform improved diagnostics of severity, early management strategies, and prevention of further postsurgical complications.


Subject(s)
Appendicitis , Sepsis , Child , Humans , Male , Female , Appendicitis/diagnosis , Appendicitis/genetics , Prospective Studies , Genetic Markers , Gene Expression Profiling , Alberta , Abdominal Pain/genetics
2.
Front Immunol ; 14: 1254873, 2023.
Article in English | MEDLINE | ID: mdl-37822940

ABSTRACT

Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features, suggesting that severe COVID-19 is a form of viral sepsis. Our objective was to identify shared gene expression trajectories strongly associated with eventual mortality between severe COVID-19 patients and contemporaneous non-COVID-19 sepsis patients in the intensive care unit (ICU) for potential therapeutic implications. Methods: Whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Using systems biology methods, drug candidates targeting key genes in the pathophysiology of COVID-19 and sepsis were identified. Results: When compared to survivors, non-survivors (irrespective of COVID-19 status) had 3.6-fold more "persistent" genes (genes that stayed up/downregulated at both timepoints) (4,289 vs. 1,186 genes); these included persistently downregulated genes in T-cell signaling and persistently upregulated genes in select innate immune and metabolic pathways, indicating unresolved immune dysfunction in non-survivors, while resolution of these processes occurred in survivors. These findings of persistence were further confirmed using two publicly available datasets of COVID-19 and sepsis patients. Systems biology methods identified multiple immunomodulatory drug candidates that could target this persistent immune dysfunction, which could be repurposed for possible therapeutic use in both COVID-19 and sepsis. Discussion: Transcriptional evidence of persistent immune dysfunction was associated with 28-day mortality in both COVID-19 and non-COVID-19 septic patients. These findings highlight the opportunity for mitigating common mechanisms of immune dysfunction with immunomodulatory therapies for both diseases.


Subject(s)
COVID-19 , Sepsis , Adult , Humans , Intensive Care Units , Viremia
3.
Front Immunol ; 14: 1243689, 2023.
Article in English | MEDLINE | ID: mdl-37680625

ABSTRACT

Introduction: Persistent symptoms after COVID-19 infection ("long COVID") negatively affects almost half of COVID-19 survivors. Despite its prevalence, its pathophysiology is poorly understood, with multiple host systems likely affected. Here, we followed patients from hospital to discharge and used a systems-biology approach to identify mechanisms of long COVID. Methods: RNA-seq was performed on whole blood collected early in hospital and 4-12 weeks after discharge from 24 adult COVID-19 patients (10 reported post-COVID symptoms after discharge). Differential gene expression analysis, pathway enrichment, and machine learning methods were used to identify underlying mechanisms for post-COVID symptom development. Results: Compared to patients with post-COVID symptoms, patients without post-COVID symptoms had larger temporal gene expression changes associated with downregulation of inflammatory and coagulation genes over time. Patients could also be separated into three patient endotypes with differing mechanistic trajectories, which was validated in another published patient cohort. The "Resolved" endotype (lowest rate of post-COVID symptoms) had robust inflammatory and hemostatic responses in hospital that resolved after discharge. Conversely, the inflammatory/hemostatic responses of "Suppressive" and "Unresolved" endotypes (higher rates of patients with post-COVID symptoms) were persistently dampened and activated, respectively. These endotypes were accurately defined by specific blood gene expression signatures (6-7 genes) for potential clinical stratification. Discussion: This study allowed analysis of long COVID whole blood transcriptomics trajectories while accounting for the issue of patient heterogeneity. Two of the three identified and externally validated endotypes ("Unresolved" and "Suppressive") were associated with higher rates of post-COVID symptoms and either persistently activated or suppressed inflammation and coagulation processes. Gene biomarkers in blood could potentially be used clinically to stratify patients into different endotypes, paving the way for personalized long COVID treatment.


Subject(s)
Body Fluids , COVID-19 , Hemostatics , Adult , Humans , Blood Coagulation , Down-Regulation , Post-Acute COVID-19 Syndrome
4.
Front Immunol ; 14: 1135859, 2023.
Article in English | MEDLINE | ID: mdl-37304268

ABSTRACT

Background: Sepsis is a dysfunctional host response to infection. The syndrome leads to millions of deaths annually (19.7% of all deaths in 2017) and is the cause of most deaths from severe Covid infections. High throughput sequencing or 'omics' experiments in molecular and clinical sepsis research have been widely utilized to identify new diagnostics and therapies. Transcriptomics, quantifying gene expression, has dominated these studies, due to the efficiency of measuring gene expression in tissues and the technical accuracy of technologies like RNA-Seq. Objective: Most of these studies seek to uncover novel mechanistic insights into sepsis pathogenesis and diagnostic gene signatures by identifying genes differentially expressed between two or more relevant conditions. However, little effort has been made, to date, to aggregate this knowledge from such studies. In this study we sought to build a compendium of previously described gene sets that combines knowledge gained from sepsis-associated studies. This would enable the identification of genes most associated with sepsis pathogenesis, and the description of the molecular pathways commonly associated with sepsis. Methods: PubMed was searched for studies using transcriptomics to characterize acute infection/sepsis and severe sepsis (i.e., sepsis combined with organ failure). Several studies were identified that used transcriptomics to identify differentially expressed (DE) genes, predictive/prognostic signatures, and underlying molecular responses and pathways. The molecules included in each gene set were collected, in addition to the relevant study metadata (e.g., patient groups used for comparison, sample collection time point, tissue type, etc.). Results: After performing extensive literature curation of 74 sepsis-related publications involving transcriptomics, 103 unique gene sets (comprising 20,899 unique genes) from thousands of patients were collated together with associated metadata. Frequently described genes included in gene sets as well as the molecular mechanisms they were involved in were identified. These mechanisms included neutrophil degranulation, generation of second messenger molecules, IL-4 and -13 signaling, and IL-10 signaling among many others. The database, which we named SeptiSearch, is made available in a web application created using the Shiny framework in R, (available at https://septisearch.ca). Conclusions: SeptiSearch provides members of the sepsis community the bioinformatic tools needed to leverage and explore the gene sets contained in the database. This will allow the gene sets to be further scrutinized and analyzed for their enrichment in user-submitted gene expression data and used for validation of in-house gene sets/signatures.


Subject(s)
COVID-19 , Sepsis , Humans , COVID-19/genetics , Sepsis/genetics , Computational Biology , Databases, Factual , Gene Expression Profiling
5.
Front Immunol ; 14: 1167917, 2023.
Article in English | MEDLINE | ID: mdl-37090709

ABSTRACT

Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features. To what extent they share mechanistically-based gene expression trajectories throughout hospitalization was unknown. Our objective was to compare gene expression trajectories between severe COVID-19 patients and contemporaneous non-COVID-19 severe sepsis patients in the intensive care unit (ICU). Methods: In this prospective single-center observational cohort study, whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Results: At ICU admission, despite COVID-19 patients being almost clinically indistinguishable from non-COVID-19 sepsis patients, COVID-19 patients had 1,215 differentially expressed genes compared to non-COVID-19 sepsis patients. After one week in the ICU, the number of differentially expressed genes dropped to just 9 genes. This drop coincided with decreased expression of antiviral genes and relatively increased expression of heme metabolism genes over time in COVID-19 patients, eventually reaching expression levels seen in non-COVID-19 sepsis patients. Both groups also had similar underlying immune dysfunction, with upregulation of immune processes such as "Interleukin-1 signaling" and "Interleukin-6/JAK/STAT3 signaling" throughout disease compared to healthy controls. Discussion: Early on, COVID-19 patients had elevated antiviral responses and suppressed heme metabolism processes compared to non-COVID-19 severe sepsis patients, although both had similar underlying immune dysfunction. However, after one week in the ICU, these diseases became indistinguishable on a gene expression level. These findings highlight the importance of early antiviral treatment for COVID-19, the potential for heme-related therapeutics, and consideration of immunomodulatory therapies for both diseases to treat shared immune dysfunction.


Subject(s)
COVID-19 , Sepsis , Adult , Humans , Prospective Studies , COVID-19/genetics , Sepsis/genetics , Intensive Care Units , Antiviral Agents
6.
Sci Rep ; 13(1): 1247, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690713

ABSTRACT

Severely-afflicted COVID-19 patients can exhibit disease manifestations representative of sepsis, including acute respiratory distress syndrome and multiple organ failure. We hypothesized that diagnostic tools used in managing all-cause sepsis, such as clinical criteria, biomarkers, and gene expression signatures, should extend to COVID-19 patients. Here we analyzed the whole blood transcriptome of 124 early (1-5 days post-hospital admission) and late (6-20 days post-admission) sampled patients with confirmed COVID-19 infections from hospitals in Quebec, Canada. Mechanisms associated with COVID-19 severity were identified between severity groups (ranging from mild disease to the requirement for mechanical ventilation and mortality), and established sepsis signatures were assessed for dysregulation. Specifically, gene expression signatures representing pathophysiological events, namely cellular reprogramming, organ dysfunction, and mortality, were significantly enriched and predictive of severity and lethality in COVID-19 patients. Mechanistic endotypes reflective of distinct sepsis aetiologies and therapeutic opportunities were also identified in subsets of patients, enabling prediction of potentially-effective repurposed drugs. The expression of sepsis gene expression signatures in severely-afflicted COVID-19 patients indicates that these patients should be classified as having severe sepsis. Accordingly, in severe COVID-19 patients, these signatures should be strongly considered for the mechanistic characterization, diagnosis, and guidance of treatment using repurposed drugs.


Subject(s)
COVID-19 , Sepsis , Humans , COVID-19/complications , Transcriptome , Biomarkers , Multiple Organ Failure
7.
J Am Coll Surg ; 234(5): 803-815, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35426393

ABSTRACT

BACKGROUND: Determining the risk of developing severe acute pancreatitis (AP) on presentation to hospital is difficult but vital to enable early management decisions that reduce morbidity and mortality. The objective of this study was to determine global gene expression profiles of patients with different acute pancreatitis severity to identify genes and molecular mechanisms involved in the pathogenesis of severe AP. STUDY DESIGN: AP patients (n = 87) were recruited within 24 hours of admission to the Emergency Department and were confirmed to exhibit at least 2 of the following features: (1) abdominal pain characteristic of AP, (2) serum amylase and/or lipase more than 3-fold the upper laboratory limit considered normal, and/or (3) radiographically demonstrated AP on CT scan. Severity was defined according to the Revised Atlanta classification. Thirty-two healthy volunteers were also recruited and peripheral venous blood was collected for performing RNA-Seq. RESULTS: In severe AP, 422 genes (185 upregulated, 237 downregulated) were significantly differentially expressed when compared with moderately severe and mild cases. Pathway analysis revealed changes in specific innate and adaptive immune, sepsis-related, and surface modification pathways in severe AP. Data-driven approaches revealed distinct gene expression groups (endotypes), which were not entirely overlapping with the clinical Atlanta classification. Importantly, severe and moderately severe AP patients clustered away from healthy controls, whereas mild AP patients did not exhibit any clear separation, suggesting distinct underlying mechanisms that may influence severity of AP. CONCLUSION: There were significant differences in gene expression affecting the severity of AP, revealing a central role of specific immunological pathways. Despite the existence of patient endotypes, a 4-gene transcriptomic signature (S100A8, S100A9, MMP25, and MT-ND4L) was determined that can predict severe AP with an accuracy of 64%.


Subject(s)
Pancreatitis , Acute Disease , Biomarkers , Gene Expression Profiling , Humans , Pancreatitis/genetics , Severity of Illness Index
8.
EBioMedicine ; 75: 103776, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35027333

ABSTRACT

BACKGROUND: Inter-individual variability during sepsis limits appropriate triage of patients. Identifying, at first clinical presentation, gene expression signatures that predict subsequent severity will allow clinicians to identify the most at-risk groups of patients and enable appropriate antibiotic use. METHODS: Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER) and one intensive-care-unit (ICU), and 44 healthy controls. Gene expression profiles were analyzed using machine learning and data mining to identify clinically relevant gene signatures reflecting disease severity, organ dysfunction, mortality, and specific endotypes/mechanisms. FINDINGS: Gene expression signatures were obtained that predicted severity/organ dysfunction and mortality in both ER and ICU patients with accuracy/AUC of 77-80%. Network analysis revealed these signatures formed a coherent biological program, with specific but overlapping mechanisms/pathways. Given the heterogeneity of sepsis, we asked if patients could be assorted into discrete groups with distinct mechanisms (endotypes) and varying severity. Patients with early sepsis could be stratified into five distinct and novel mechanistic endotypes, named Neutrophilic-Suppressive/NPS, Inflammatory/INF, Innate-Host-Defense/IHD, Interferon/IFN, and Adaptive/ADA, each based on ∼200 unique gene expression differences, and distinct pathways/mechanisms (e.g., IL6/STAT3 in NPS). Endotypes had varying overall severity with two severe (NPS/INF) and one relatively benign (ADA) groupings, consistent with reanalysis of previous endotype studies. A 40 gene-classification tool (accuracy=96%) and several gene-pairs (accuracy=89-97%) accurately predicted endotype status in both ER and ICU validation cohorts. INTERPRETATION: The severity and endotype signatures indicate that distinct immune signatures precede the onset of severe sepsis and lethality, providing a method to triage early sepsis patients.


Subject(s)
Sepsis , Critical Care , Humans , Intensive Care Units , Sepsis/diagnosis , Sepsis/genetics , Severity of Illness Index , Transcriptome
9.
Front Microbiol ; 12: 640787, 2021.
Article in English | MEDLINE | ID: mdl-33927701

ABSTRACT

Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.

10.
mSystems ; 5(4)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32753509

ABSTRACT

The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to >1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2 The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as >30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria.IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.

11.
Front Immunol ; 11: 1683, 2020.
Article in English | MEDLINE | ID: mdl-32849587

ABSTRACT

Systems biology is an approach to interrogate complex biological systems through large-scale quantification of numerous biomolecules. The immune system involves >1,500 genes/proteins in many interconnected pathways and processes, and a systems-level approach is critical in broadening our understanding of the immune response to vaccination. Changes in molecular pathways can be detected using high-throughput omics datasets (e.g., transcriptomics, proteomics, and metabolomics) by using methods such as pathway enrichment, network analysis, machine learning, etc. Importantly, integration of multiple omic datasets is becoming key to revealing novel biological insights. In this perspective article, we highlight the use of protein-protein interaction (PPI) networks as a multi-omics integration approach to unravel information flow and mechanisms during complex biological events, with a focus on the immune system. This involves a combination of tools, including: InnateDB, a database of curated interactions between genes and protein products involved in the innate immunity; NetworkAnalyst, a visualization and analysis platform for InnateDB interactions; and MetaBridge, a tool to integrate metabolite data into PPI networks. The application of these systems techniques is demonstrated for a variety of biological questions, including: the developmental trajectory of neonates during the first week of life, mechanisms in host-pathogen interaction, disease prognosis, biomarker discovery, and drug discovery and repurposing. Overall, systems biology analyses of omics data have been applied to a variety of immunology-related questions, and here we demonstrate the numerous ways in which PPI network analysis can be a powerful tool in contributing to our understanding of the immune system and the study of vaccines.


Subject(s)
Genomics , Immune System/drug effects , Immunity, Innate/drug effects , Metabolomics , Systems Biology , Vaccines/pharmacology , Adaptive Immunity/drug effects , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Immune System/immunology , Immune System/metabolism , Protein Interaction Maps , Signal Transduction , Systems Integration , Transcriptome
12.
Front Microbiol ; 11: 773, 2020.
Article in English | MEDLINE | ID: mdl-32431676

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of nosocomial and chronic infections contributing to morbidity and mortality in cystic fibrosis patients. One of the reasons for its success as a pathogen is its ability to adapt to a broad range of circumstances. Here, we show the involvement of the general nitrogen regulator NtrBC, which is structurally conserved but functionally diverse across species, in pathogenic and adaptive states of P. aeruginosa. The role of NtrB and NtrC was examined in progressive or chronic infections, which revealed that mutants (ΔntrB, ΔntrC, and ΔntrBC) were reduced in their ability to invade and cause damage in a high-density abscess model in vivo. Progressive infections were established with mutants in the highly virulent PA14 genetic background, whereas chronic infections were established with mutants in the less virulent clinical isolate LESB58 genetic background. Characterization of adaptive lifestyles in vitro confirmed that the double ΔntrBC mutant demonstrated >40% inhibition of biofilm formation, a nearly complete inhibition of swarming motility, and a modest decrease and altered surfing motility colony appearance; with the exception of swarming, single mutants generally had more subtle or no changes. Transcriptional profiles of deletion mutants under swarming conditions were defined using RNA-Seq and unveiled dysregulated expression of hundreds of genes implicated in virulence in PA14 and LESB58 chronic lung infections, as well as carbon and nitrogen metabolism. Thus, transcriptional profiles were validated by testing responsiveness of mutants to several key intermediates of central metabolic pathways. These results indicate that NtrBC is a global regulatory system involved in both pathological and physiological processes relevant to the success of Pseudomonas in high-density infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...