Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(6)2023 06 10.
Article in English | MEDLINE | ID: mdl-37372424

ABSTRACT

Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Heart Failure , Humans , Cardiomyopathy, Dilated/genetics , Myocardium , Cardiomyopathies/genetics , Biomarkers , Cyclin D1
2.
Genes (Basel) ; 13(5)2022 05 08.
Article in English | MEDLINE | ID: mdl-35627227

ABSTRACT

Prostate cancer (PCa) is a life-threatening heterogeneous malignancy of the urinary tract. Due to the incidence of prostate cancer and the crucial need to elucidate its molecular mechanisms, we searched for possible prognosis impactful genes in PCa using bioinformatics analysis. A script in R language was used for the identification of Differentially Expressed Genes (DEGs) from the GSE69223 dataset. The gene ontology (GO) of the DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. A protein-protein interaction (PPI) network was constructed using the STRING online database to identify hub genes. GEPIA and UALCAN databases were utilized for survival analysis and expression validation, and 990 DEGs (316 upregulated and 674 downregulated) were identified. The GO analysis was enriched mainly in the "collagen-containing extracellular matrix", and the KEGG pathway analysis was enriched mainly in "focal adhesion". The downregulation of neurotrophic receptor tyrosine kinase 1 (NTRK1) was associated with a poor prognosis of PCa and had a significant positive correlation with infiltrating levels of immune cells. We acquired a collection of pathways related to primary PCa, and our findings invite the further exploration of NTRK1 as a biomarker for early diagnosis and prognosis, and as a future potential molecular therapeutic target for PCa.


Subject(s)
Gene Regulatory Networks , Prostatic Neoplasms , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Prognosis , Prostatic Neoplasms/genetics
3.
Pharmaceutics ; 14(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35335890

ABSTRACT

Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.

SELECTION OF CITATIONS
SEARCH DETAIL
...