Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1303: 342491, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38609258

ABSTRACT

Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 107 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.


Subject(s)
Acinetobacter baumannii , Chitosan , Graphite , Nanotubes, Carbon , Quantum Dots , Humans , Hemin , Bacteria , Electrodes
2.
Anal Biochem ; 679: 115288, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619902

ABSTRACT

Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.


Subject(s)
Acinetobacter baumannii , Silicon Dioxide , Bacteria , Dielectric Spectroscopy , Glyoxal , Oligonucleotides
3.
Mikrochim Acta ; 190(8): 308, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37466698

ABSTRACT

An electrochemical aptasensor has been developed to detect Acinetobacter baumannii (A. baumannii). The proposed system was developed by modifying carbon screen-printed electrodes (CSPEs) with a synthesized MWCNT@Fe3O4@SiO2-Cl nanocomposite and then binding A. baumannii-specific aptamer using covalent immobilization on the modified electrode surface and the interaction of methylene blue (MB) with Apt as an electrochemical redox indicator. As a result of the incubation of the A. baumannii bacteria as a target on the proposed aptasensor, a cathodic peak current density (Jpc) of MB decreased due to the formation of the Apt-A. baumannii complex and MB being released from the immobilized Apt on the surface of the modified electrode. In addition to increasing the electron transfer kinetics, the nanocomposite provides a relatively stable matrix to improve the loading Apt sequence. The suggested aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of 10.0-1.0 × 107 colony-forming unit (CFU) mL-1 and a detection limit of 1 CFU mL-1 (S/N = 3) using differential pulse voltammetry (DPV) studies at a working potential of ~0.29 V and a scan rate of 100 mV s-1. The outcomes revealed that the aptasensor exhibited high A. baumannii detection sensitivity, stability, reproducibility, and specificity.


Subject(s)
Acinetobacter baumannii , Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Electrochemical Techniques , Methylene Blue , Reproducibility of Results , Silicon Dioxide
4.
Bioelectrochemistry ; 150: 108332, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36493674

ABSTRACT

An electrochemical aptasensor developed to realize the detection of Pseudomonas aeruginosa (P. aeruginosa) bacteria based on a signal amplification strategy. The carbon screen-printed electrode (CSPE) surface was modified by MIL-101(Cr)/Multi-walled carbon nanotubes (MWCNT), which significantly increased the effective surface area of the electrode, thus resulting in further F23 aptamer immobilization at the surface of the modified electrode. As a result, the P. aeruginosa can be efficiently captured onto the surface of the aptasensor. Moreover, aptamer immobilized on the two-dimensional graphitic carbon nitride complex with silver nanoparticles (AgNPs/c-g-C3N4/Apt) was used as an electrochemical signal label, connected to P. aeruginosa bacteria at the modified electrode. This strategy increased the aptamer surface density and the sensitivity for detecting P. aeruginosa. Also, the resultant material was thoroughly characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis techniques. A highly sensitive voltammetric aptasensor for P. aeruginosa detection was obtained via this strategy at the limit of detection of 1 Colony-forming unit (CFU)/mL (σ = 3). Therefore, this proposed strategy with dual signal amplification can be a promising platform for simple, practical, reliable, and sensitive method for P. aeruginosa.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Pseudomonas aeruginosa , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Silver/chemistry , Electrodes , Electrochemical Techniques/methods , Limit of Detection
5.
Anal Chem ; 92(19): 12733-12740, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32902258

ABSTRACT

Exosomes, small extracellular vesicles, are released by various cell types. They are found in bodily fluids, including blood, urine, serum, and saliva, and play essential roles in intercellular communication. Exosomes contain various biomarkers, such as nucleic acids and proteins, that reflect the status of their parent cells. Since they influence tumorigenesis and metastasis in cancer patients, exosomes are excellent noninvasive potential indicators for early cancer detection. Aptamers with specific binding properties have distinct advantages over antibodies, making them effective versatile bioreceptors for the detection of exosome biomarkers. Here, we review various aptamer-based exosome detection approaches based on signaling methods, such as fluorescence, colorimetry, and chemiluminescence, focusing on electrochemical strategies that are easier, cost-effective, and more sensitive than others. Further, we discuss the clinical applications of electrochemical exosome analysis strategies as well as future research directions in this field.


Subject(s)
Aptamers, Nucleotide/analysis , Electrochemical Techniques , Exosomes/chemistry , Humans
6.
J Pharm Biomed Anal ; 163: 180-187, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30316063

ABSTRACT

In this paper, we report the application of a reusable electrochemical aptasensor for detection of tryptophan by using [Fe(bpy)3](p-CH3C6H4SO2)2 as an electroactive indicator and based on the target-compelled aptamer displacement. The aptasensor fabricated by self-assembling the thiolated probe on the surface of graphite screen-printed electrode modified with gold nanoparticles/multiwalled carbon nanotubes and chitosan nanocomposite (AuNPs/MWCNTs-Chit/SPE). Afterward, Trp aptamer (Apt) immobilized on the modified electrode surface through hybridization. In the absence of Trp, a sharp peak of [Fe(bpy)3](p-CH3C6H4 SO2)2 can be observed in differential pulse voltammetry (DPV) study. The introduction of Trp led to the formation of aptamer-Trp complex and dissociation of the aptamer from the DNA-Apt duplex on the electrode surface into the solution and decreases the peak current intensity of electroactive indicator. This is because, [Fe(bpy)3](p-CH3C6H4SO2)2 tends to bind to the two strands DNA. Therefore, the peak current of [Fe(bpy)3](p-CH3C6H4 SO2)2 linearly decreased with increasing the concentration of Trp over a range of 3.0 nM- 100 µM. The detection limit (3 σ) was 1.0 nM. In addition, we examined the selectivity of the constructed biosensor for tyrosine, histidine, arginine, lysine, valine and methionine that belonged to the amino acid family. The obtained results showed that the fabricated sensor had a good selectivity for Trp against the other examined amino acids. Also, the potential applicability of the aptasensor was investigated by detecting the Trp in a complex media such as human blood plasma spiked with Trp.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Tryptophan/blood , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Feasibility Studies , Ferrous Compounds/chemistry , Gold/chemistry , Graphite/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Sensitivity and Specificity , Tryptophan/chemistry
7.
Int J Biol Macromol ; 113: 648-654, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29447970

ABSTRACT

In this paper, a new and facile method for the electrochemical determination of l-tyrosine was designed. First, 3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticles were added to a paper disc. Then, the banana peel tissue and the mediator potassium hexacyanoferrate were dropped onto the paper, respectively. The modified paper disc was placed on the top of the graphite screen printed electrode and electrochemical characterization of this biosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy methods. The effective parameters like pH, banana peel tissue percentage, and the amount of mediator loading were optimized. l-tyrosine measurements were done by differential pulse voltammetry with a little sample (3 µL) for analysis. The biosensor showed a linear response for l-tyrosine in the wide concentration range of 0.05-600 µM and a low detection limit about 0.02 µM because of the co-catalytic effect of enzyme and nanoparticles. The stability of the biosensor and its selectivity were evaluated. This biosensor was applied for the voltammetric determination of l-tyrosine in the blood plasma sample. The results of the practical application study were comparable with the standard method (HPLC). In conclusion, a simple, inexpensive, rapid, sensitive and selective technique was successfully applied to the l-tyrosine analysis of the little samples.


Subject(s)
Biocatalysis , Biosensing Techniques/methods , Monophenol Monooxygenase/metabolism , Musa/enzymology , Nanoparticles/chemistry , Paper , Silicon Dioxide/chemistry , Tyrosine/analysis , Electrochemistry , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Limit of Detection , Monophenol Monooxygenase/chemistry , Tyrosine/chemistry
8.
Anal Bioanal Chem ; 408(10): 2557-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26879648

ABSTRACT

A highly sensitive and low-cost electrochemical aptasensor was developed for the determination of chloramphenicol (CAP). The system was based on a CAP-binding aptamer, a molecular recognition element, and 1,4-diazabicyclo[2.2.2]octane (DABCO)-supported mesoporous silica SBA-15 on the surface of a screen-printed graphite electrode for formation of dendritic gold nanostructures and improving the performance and conductivity of the biosensor. Hemin has been applied as an electrochemical indicator which interacted with the guanine bases of the aptamer. In the absence of CAP, hemin binds to the aptamer and produces a weak differential pulse voltammetric (DPV) signal. The presence of CAP led to stabilization of the folded aptamer, which generated an amplified DPV signal. The peak current of hemin increased linearly with the concentration of CAP. Under optimal conditions, two linear ranges were obtained from 0.03 to 0.15 µM and 0.15 to 7.0 µM, respectively, and the detection limit was 4.0 nM. The prepared biosensor has good selectivity against other non-target drugs. Thus, the sensor could provide a promising platform for the fabrication of aptasensors. The feasibility of using this aptasensor was demonstrated by determination of CAP in a human blood serum sample.


Subject(s)
Aptamers, Nucleotide/chemistry , Chloramphenicol/analysis , Gold/chemistry , Nanostructures , Silicon Dioxide/chemistry , Chloramphenicol/blood , Humans , Limit of Detection , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...