Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 252: 126215, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37572806

ABSTRACT

Hereunder, for the first time, we reported phytocompounds in the methanolic extract of Acacia modesta (AM) gum through Gas chromatography-mass spectrometry (GS-MS). Further, the AM gum aqueous solution was used for gold nanoparticles (AuNPs) synthesis through a simple, swift, eco-friendly, and less costly green synthesis approach. A total of 108 phytocompounds (63 with nonpolar, 45 with polar column) were identified in the gum extract, which includes fatty acids, alcohols, sterols, aldehyde/ketones, furans, aromatic compounds, esters, phenols, terpenes, sugar derivatives, alkaloids, and flavones. From three used concentrations (5, 10, and 15 mg/mL) of the AM gum aqueous solution, the 15 mg/mL gum solution resulted in more successful AuNP synthesis with a smaller size, which was visualized by a rusty red color appearance. UV-Visible absorption spectroscopy revealed the characteristic surface plasmon resonance (SPR) of AuNPs in aqueous solution at 540 nm. Dynamic light scattering (DLS) measurement of NPs solution revealed a hydrodynamic diameter of 162 ± 02 nm with the highest gum concentration where core AuNPs diameter was 22 ± 03 nm, recorded by Transmission electron microscopy. Zeta potential revealed fair stability of AuNPs that was not decreased with time. Catalytic activity experiments revealed that AM gum-based AuNPs can increase the rate of the reduction of methylene blue 10 times in comparison with AM gum extract alone. Results from this study showed that a diverse array of phytocompounds in AM gum can successfully reduce gold ions into gold nanoparticles, which can be used further in different pharmaceutical and industrial applications.


Subject(s)
Acacia , Metal Nanoparticles , Gold , Methanol , Gas Chromatography-Mass Spectrometry , Metal Nanoparticles/chemistry , Green Chemistry Technology/methods , Plant Extracts/chemistry
2.
ACS Omega ; 5(26): 16149-16164, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32656437

ABSTRACT

In recent years, researchers have attempted to find some practical approaches for asphaltene adsorption and the prevention or postponement of asphaltene precipitation. Among different techniques, nanotechnology has attracted the researchers' attention to overcome the formation damage resulting from the deposition of asphaltenes. In this study, the application of two types of carboxylate-alumoxane nanoparticles (functionalized boehmite by methoxyacetic acid (BMA) and functionalized pseudo-boehmite by methoxyacetic acid (PBMA)) for asphaltene adsorption and precipitation was investigated. First, the synthesis of two functionalized nanoparticles was performed via the sol-gel method. For the assessment of the adsorption efficiency and adsorption capacity of these nanoparticles toward asphaltene adsorption, the batch adsorption experiments applying ultraviolet-visible (UV-Vis) spectroscopy were performed. The Langmuir and Freundlich isotherms were studied to describe the interaction between asphaltene molecules and carboxylate-alumoxane nanoparticles. For determining the "onset" point of asphaltene precipitation, the indirect method, which was based on the difference in the optical property of various solutions containing different concentrations of asphaltene, was utilized by applying UV-Vis spectroscopy. The isotherm models indicate that the adsorption of asphaltene on the surface of nanoparticles is better fitted to the Freundlich isotherm model compared with the Langmuir model. In the presence of PBMA (0.1 wt %), the onset point was delayed around 26, 20, and 17% in the asphaltene concentrations of 1000, 3000, and 5000 ppm, respectively, in comparison with their reference synthetic oils. On the other hand, these postponements for BMA nanoparticles (0.1 wt %) were 17%, 9%, and insignificant for the asphaltene concentrations of 1000, 3000, and 5000 ppm, respectively. The results reveal that two functionalized nanoparticles tend to adsorb asphaltene molecules and have a positive impact on the postponement of asphaltene precipitation due to molecular interactions between the surface of carboxylate-alumoxane nanoparticles and asphaltene molecules. However, PBMA nanoparticles exhibited better performance on the asphaltene adsorption and postponement of asphaltene precipitation, which is related to its smaller size, as well as higher surface area, compared with BMA nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...