Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 124(Pt B): 110953, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757632

ABSTRACT

BACKGROUND: Pollens, particularly tree and plant pollens, are one of the major causes of allergic respiratory diseases worldwide. Allergy to pollens of different species of Salix trees has been reported in various regions of the world. The most common type of Salix tree in Iran is white willow (Salix alba). OBJECTIVES: This study aimed to identify and determine the immunochemical characteristics of allergenic proteins in S. alba tree pollen extract using SDS-PAGE and IgE- immunoblotting methods. Moreover, the cross-reaction pattern of the specific IgE antibody of S. alba tree pollen proteins with pollen allergens of common allergenic trees, i.e., Populus nigra (P. nigra), Cupressus sempervirens (C. sempervirens), Pinus brutia (P. brutia) and Platanus orientalis (P. orientalis) in the region was investigated. METHODS: The reaction of allergenic proteins in S. alba pollen extract with specific IgE antibodies in patients' sera was investigated using SDS-PAGE and IgE-immunoblotting methods. The cross-reaction of specific IgE antibodies of the proteins present in S. alba pollen extract with pollen allergens of common allergenic trees in the region was investigated using ELISA and immunoblotting inhibition methods. In silico methods such as phylogenetic tree drawing and alignment of amino acid sequences were used to examine the evolutionary relationship and homology structure of common allergenic proteins (Panallergens) responsible for cross reactions. RESULTS: More than 11 protein bands binding to specific IgE antibodies in patients' sera with a molecular weight between 13 and 95 kDa were identified in the S. alba tree pollen extract. ELISA and immunoblotting inhibition results showed that P. nigra extract could inhibit the binding of IgE antibodies to S. alba pollen extract proteins to a greater extent than C. sempervirens, P. brutia, and P. orientalis tree extracts. In silico methods investigated the results of ELISA and immunoblotting inhibition methods. Moreover, a high structural homology and evolutionary relationship were observed between S. alba and P. nigra tree pollen panallergens. CONCLUSION: In this study, it was found that more than 80 % of the sensitive patients who were examined had specific IgE antibodies reacting with the approximately a 15 kDa-protein present in the S. alba pollen extract. Furthermore, the specific IgE-binding proteins found in the pollens of S. alba and P. nigra trees had relative structural homology, and it is likely that if recombinant forms are produced, they can be used for diagnostic and therapeutic purposes for both of the trees.


Subject(s)
Allergens , Salix , Humans , Salix/metabolism , Cross Reactions , Phylogeny , Immunoglobulin E , Pollen , Plant Extracts/chemistry , Immunoblotting , Plant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...