Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 29(9): 1353-1369, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38024952

ABSTRACT

Drought is one of the main environmental stresses affecting the quality and quantity of sesame production worldwide. The present study was conducted to investigate the effect of drought stress and subsequent re-watering on physiological, biochemical, and molecular responses of two contrasted sesame genotypes (susceptible vs. tolerant). Results showed that plant growth, photosynthetic rate, stomatal conductance, transpiration rate, and relative water content were negatively affected in both genotypes during water deficit. Both genotypes accumulated more soluble sugars, free amino acids, and proline and exhibited an increased enzyme activity for peroxidase, catalase, superoxide dismutase, and pyruvate dehydrogenase in response to drought damages including increased lipid peroxidation and membrane disruption. However, the tolerant genotype revealed a more extended root system and a more efficient photosynthetic apparatus. It also accumulated more soluble sugars (152%), free amino acids (48%), proline (75%), and antioxidant enzymes while showing lower electrolyte leakage (26%), lipid peroxidation (31%), and starch (35%) content, compared to the susceptible genotype at severe drought. Moreover, drought-related genes such as MnSOD1, MnSOD2, and PDHA-M were more expressed in the tolerant genotype, which encode manganese-dependent superoxide dismutase and the alpha subunit of pyruvate dehydrogenase, respectively. Upon re-watering, tolerant genotype recovered to almost normal levels of photosynthesis, carboxylation efficiency, lipid peroxidation, and electrolyte leakage, while susceptible genotype still suffered critical issues. Overall, these results suggest that a developed root system and an efficient photosynthetic apparatus along with the timely and effective accumulation of protective compounds enabled the tolerant sesame to withstand stress and successfully return to a normal growth state after drought relief. The findings of this study can be used as promising criteria for evaluating genotypes under drought stress in future sesame breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01372-y.

2.
Transgenic Res ; 32(5): 475-485, 2023 10.
Article in English | MEDLINE | ID: mdl-37656262

ABSTRACT

Sugar beet is an economically important crop and one of the major sources of sucrose around the world. Beet necrotic yellow vein virus (BNYVV) and Beet severe curly top virus (BSCTV) are two widespread viruses in sugar beet that cause severe damage to its performance. Previously, we have successfully produced resistance to BNYVV based on RNA silencing in sugar beet by introducing constructs carrying the viral coat-protein-encoding DNA sequence, CP21, in sense and anti-sense orientations. Yet, the RNA silencing-mediated resistance to a specific virus could be affected by other ones as a part of synergistic interactions. In this study, we assayed the specificity of the induced resistance against BNYVV in two sets of transgenic events, S3 and S6 carrying 5'-UTR with or without CP21-coding sequences, respectively. These events were subjected to viral challenges with either BNYVV, an Iranian isolate of BSCTV (BSCTV-Ir) or both. All the plants inoculated with just BSCTV-Ir displayed curly-leaf symptoms. However, partial resistance was evident in S3 events as shown by mild symptoms and reduced PCR amplification of the BSCTV-Ir coat protein encoding sequence. Based on the presented data, resistance to BNYVV was stable in almost all the transgenic plants co-infected with BSCTV-Ir, except for one event, S3-229. In general, it seems that the co-infection does not affect the resistance to BNYVV in transgenic plants. These findings demonstrated that the introduced RNA silencing-mediated resistance against BNYVV in transgenic sugar beets is specific and is not suppressed after co-infection with a heterologous virus.


Subject(s)
Beta vulgaris , Coinfection , RNA Viruses , Plants, Genetically Modified/genetics , Beta vulgaris/genetics , RNA Viruses/genetics , Coinfection/genetics , Iran , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL
...