Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Food Prot ; 87(6): 100288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697484

ABSTRACT

Escherichia coli commonly found in the gastrointestinal tracts of food animals include Shiga toxin-producing E. coli (STEC, stx+, eae-), Enterohemorrhagic E. coli (EHEC, stx+, eae+), Enteropathogenic E. coli (EPEC, stx-, eae+), and "nondiarrheagenic" E. coli (NDEC, stx-, eae-). EHEC, EPEC, and STEC are associated with foodborne disease outbreaks. During meat processing, disinfectants are employed to control various bacteria, including human pathogens. Concerns exist that E. coli resistant to antibiotics are less susceptible to disinfectants used during meat processing. Since EHEC, EPEC, and STEC with reduced susceptibility to disinfectants are potential public health risks, the goal of this study was to evaluate the association of antibiotic resistant (ABR) E. coli with increased tolerance to 4% lactic acid (LA) and 150 ppm quaternary ammonium compounds (QACs). A pool of 3,367 E. coli isolated from beef cattle, veal calves, swine, and sheep at various processing stages was screened to identify ABR E. coli. Resistance to ≥1 of the six antibiotics examined was identified in 27.9%, 36.1%, 54.5%, and 28.7% among the NDEC (n = 579), EHEC (n = 693), EPEC (n = 787), and STEC (n = 1308) isolates evaluated, respectively. Disinfectant tolerance did not differ (P > 0.05) between ABR and antibiotic susceptible EHEC isolates. Comparable frequencies (P > 0.05) of biofilm formation or congo red binding were observed between ABR and antibiotic susceptible strains of E. coli. Understanding the frequencies of ABR and disinfectant tolerance among E. coli present in food-animal is a critically important component of meat safety.


Subject(s)
Anti-Bacterial Agents , Disinfectants , Escherichia coli , Red Meat , Disinfectants/pharmacology , Animals , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Red Meat/microbiology , Humans , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Food Microbiology , Colony Count, Microbial , Cattle , Meat/microbiology , Food Contamination/analysis
2.
Microbiol Resour Announc ; 12(10): e0042223, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37768048

ABSTRACT

Infection by antibiotic-resistant extraintestinal pathogenic Escherichia coli may result in treatment failure and thus pose a serious public health threat. Here we report the complete closed genome sequence of three multidrug-resistant (MDR) human uropathogenic E. coli isolates using long-read sequencing technology and de novo assembly.

3.
Food Microbiol ; 115: 104310, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567643

ABSTRACT

The food pathogen Campylobacter jejuni both colonizes the lower intestines of poultry and infects the lower intestines of humans. The lower intestines of both poultry and humans are also home to a wide range of commensal organisms which compete with an organism like C. jejuni for space and resources. The commensal organisms are believed to protect humans against infection by pathogens of the digestive tract like C. jejuni. The short chain fatty acid (SCFA) butyrate is a metabolite commonly produced by commensal organisms within both the poultry and human digestive tract. We investigated the effect that physiologically relevant concentrations of butyrate have on C. jejuni under in vitro conditions. Butyrate at concentrations of 5 and 20 mM negatively impacted C. jejuni motility and biofilm formation. These two traits are believed important for C. jejuni's ability to infect the lower intestines of humans. Additionally, 20 mM butyrate concentrations were observed to influence the expression of a range of different Campylobacter proteins. Constitutive expression of one of these proteins, LysR, within a C. jejuni strain partially lessened the negative influence butyrate had on the bacteria's motility.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Humans , Animals , Butyrates/pharmacology , Campylobacter jejuni/physiology , Biofilms , Intestines , Gastrointestinal Tract , Campylobacter Infections/veterinary , Chickens
4.
Front Cell Infect Microbiol ; 12: 888568, 2022.
Article in English | MEDLINE | ID: mdl-35770066

ABSTRACT

A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Laboratory Infection , Anti-Bacterial Agents/pharmacology , Escherichia coli O157/genetics , Humans , Sequence Analysis , Shiga Toxin 2/genetics
5.
Biotechniques ; 72(6): 255-262, 2022 06.
Article in English | MEDLINE | ID: mdl-35416085

ABSTRACT

Campylobacter genetics research is negatively impacted by a shortage of molecular tools for expressing DNA elements. A previous technique coupled an antibiotic resistance gene and its promoter to a gene of interest, inserting this expression unit into a conserved chromosomal location. Here the authors describe two new plasmids for construction and gene integration utilizing aspects of the previous type of expression unit. pBlueKan+cysMPro allows for the assembly of amplified DNA targets behind a kanamycin resistance marker and a constitutively transcribed cysM promoter. Transfer of the transcription unit to plasmid pCJR01 adds flanking regions of Campylobacter rRNA homology for recombination into conserved rRNA regions. System utility was demonstrated by restoring function of a flaAB deletion (RM3194ΔflaAB::tet) with a flaA gene or flaA/flaB combination.


Subject(s)
Campylobacter jejuni , Anti-Bacterial Agents , Campylobacter jejuni/genetics , DNA, Bacterial/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Plasmids/genetics
6.
Front Microbiol ; 11: 627997, 2020.
Article in English | MEDLINE | ID: mdl-33519788

ABSTRACT

The gold standard method for serotyping Escherichia coli has relied on antisera-based typing of the O- and H-antigens, which is labor intensive and often unreliable. In the post-genomic era, sequence-based assays are potentially faster to provide results, could combine O-serogrouping and H-typing in a single test, and could simultaneously screen for the presence of other genetic markers of interest such as virulence factors. Whole genome sequencing is one approach; however, this method has limited multiplexing capabilities, and only a small fraction of the sequence is informative for subtyping or identifying virulence potential. A targeted, sequence-based assay and accompanying software for data analysis would be a great improvement over the currently available methods for serotyping. The purpose of this study was to develop a high-throughput, molecular method for serotyping E. coli by sequencing the genes that are required for production of O- and H-antigens, as well as to develop software for data analysis and serotype identification. To expand the utility of the assay, targets for the virulence factors, Shiga toxins (stx 1, and stx 2) and intimin (eae) were included. To validate the assay, genomic DNA was extracted from O-serogroup and H-type standard strains and from Shiga toxin-producing E. coli, the targeted regions were amplified, and then sequencing libraries were prepared from the amplified products followed by sequencing of the libraries on the Ion S5™ sequencer. The resulting sequence files were analyzed via the SeroType Caller™ software for identification of O-serogroup, H-type, and presence of stx 1 , stx 2, and eae. We successfully identified 169 O-serogroups and 41 H-types. The assay also routinely detected the presence of stx 1a,c,d (3 of 3 strains), stx 2c-e,g (8 of 8 strains), stx 2f (1 strain), and eae (6 of 6 strains). Taken together, the high-throughput, sequence-based method presented here is a reliable alternative to antisera-based serotyping methods for E. coli.

7.
J Food Prot ; 81(8): 1275-1282, 2018 08.
Article in English | MEDLINE | ID: mdl-29985068

ABSTRACT

The U.S. Food and Drug Administration Escherichia coli Identification (FDA-ECID) microarray provides rapid molecular characterization of E. coli. The effectiveness of the FDA-ECID for characterizing Shiga toxin-producing E. coli (STEC) was evaluated by three federal laboratories and one reference laboratory with a panel of 54 reference E. coli strains from the External Quality Assurance program. Strains were tested by FDA-ECID for molecular serotyping (O and H antigens), Shiga toxin subtyping, and the presence of the ehxA and eae genes for enterohemolysin and intimin, respectively. The FDA-ECID O typing was 96% reproducible among the four laboratories and 94% accurate compared with the reference External Quality Assurance data. Discrepancies were due to the absence of O41 target loci on the array and to two pairs of O types with identical target sequences. H typing was 96% reproducible and 100% accurate, with discrepancies due to two strains from one laboratory that were identified as mixed by FDA-ECID. Shiga toxin (Stx) type 1 subtyping was 100% reproducible and accurate, and Stx2 subtyping was 100% reproducible but only 64% accurate. FDA-ECID identified most Stx2 subtypes but had difficulty distinguishing among stx2a, stx2c, and stx2d genes because of close similarities of these sequences. FDA-ECID was 100% effective for detecting ehxA and eae and accurately subtyped the eae alleles. This interlaboratory study revealed that FDA-ECID for STEC characterization was highly reproducible for molecular serotyping, stx and eae subtyping, and ehxA detection. However, the array was less useful for distinguishing among the highly homologous O antigen genes and the stx2a, stx2c, and stx2d subtypes.


Subject(s)
Escherichia coli Proteins , Food Microbiology , Shiga-Toxigenic Escherichia coli , Virulence/genetics , Escherichia coli Proteins/genetics , Humans , Serotyping , Shiga Toxin , Shiga Toxin 1 , Shiga-Toxigenic Escherichia coli/isolation & purification , United States , United States Food and Drug Administration
8.
J Food Prot ; 80(5): 829-836, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28402187

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O157:H7 and serogroups O26, O45, O103, O111, O121, and O145 are often referred to as the "top seven" STEC, and these have been declared to be adulterants in beef by the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS). The aim of this work was to compare the methods described in the USDA FSIS Microbiology Laboratory Guidebook (MLG) to a two-stage Applied Biosystems RapidFinder STEC real-time PCR method to test for the top seven STEC in raw ground beef. The specificity of the RapidFinder workflow that targets non-O157 STEC O-antigen genes, stx1, stx2, and eae, and E. coli O157-specific targets was determined with 132 top seven STEC strains and 283 exclusion strains. All inclusion strains were positive, and all exclusion strains gave negative results with the RapidFinder assay. Strains carrying all of the known variants of stx1 and stx2, including stx2f and stx2g, were also detected. For RapidFinder analysis, 375-g ground beef samples spiked with ≥4 CFU of representative STEC strains were enriched in 1 L of tryptic soy broth (TSB) for 10 h at 42 ± 1°C, and for the MLG method, 325-g samples were similarly spiked and enriched in 975 mL of modified TSB for 15 h at 42 ± 1°C. Following DNA extraction, real-time PCR was performed using RapidFinder Express software, and for the MLG method, the BAX Real-Time PCR STEC Suite and the BAX Real-Time E. coli O157:H7 assay were used with the BAX System Q7 software. Following immunomagnetic separation, presumptive colonies from modified Rainbow agar O157 plates were confirmed by the real-time PCR assays. Results of the RapidFinder and BAX assays were similar; all samples were positive after 10 and 15 h of enrichment, respectively. Isolation and confirmation of isolates was possible on all samples, except that two O111:NM strains could not be isolated from a portion of the inoculated samples. Thus, the RapidFinder system can be used for routine and rapid detection of the top seven STEC in beef.

9.
Front Microbiol ; 7: 574, 2016.
Article in English | MEDLINE | ID: mdl-27148249

ABSTRACT

Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx 2e (81%) was the most common Stx variant, followed by stx 1a (14%), stx 2d (3%), and stx 1c (1%). The STEC serogroups that carried stx 2d were O15:H27, O159:H16 and O159:H-. Similar to stx 2a and stx 2c, the stx 2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.

10.
Appl Environ Microbiol ; 80(20): 6395-402, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25107960

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn.


Subject(s)
Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity , Animals , Electrophoresis, Gel, Pulsed-Field , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Escherichia coli Infections/veterinary , Housing, Animal , Real-Time Polymerase Chain Reaction , Serogroup , Shiga-Toxigenic Escherichia coli/classification , Swine/microbiology , Swine Diseases/microbiology , Swine Diseases/transmission , Virulence/genetics
11.
Toxins (Basel) ; 6(6): 1855-72, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24921195

ABSTRACT

Shiga toxins 1 and 2 (Stx1 and Stx2) from Shiga toxin-producing E. coli (STEC) bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies) and pooled horseradish peroxidase (HRP)-conjugated monoclonal antibodies. Following the reaction of HRP with the precipitating chromogenic substrate (metal enhanced 3,3-diaminobenzidine tetrahydrochloride or DAB), the formation of a colored product was quantitatively measured with an inexpensive flatbed page scanner. The colorimetric ELISA microarray was demonstrated to detect Stx1 and Stx2 at levels as low as ~4.5 ng/mL within ~2 h of total assay time with a narrow linear dynamic range of ~1-2 orders of magnitude and saturation levels well above background. Stx1 and/or Stx2 produced by various strains of STEC were also detected following the treatment of cultured cells with mitomycin C (a toxin-inducing antibiotic) and/or B-PER (a cell-disrupting, protein extraction reagent). Semi-quantitative detection of Shiga toxins was demonstrated to be sporadic among various STEC strains following incubation with mitomycin C; however, further reaction with B-PER generally resulted in the detection of or increased detection of Stx1, relative to Stx2, produced by STECs inoculated into either axenic broth culture or culture broth containing ground beef.


Subject(s)
Antibodies, Monoclonal/metabolism , Food Inspection/methods , Shiga Toxin 1/analysis , Shiga Toxin 2/analysis , 3,3'-Diaminobenzidine/chemistry , Anti-Bacterial Agents/pharmacology , Antibody Specificity , Colorimetry , Cross Reactions , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Immunoprecipitation , Indicators and Reagents/chemistry , Limit of Detection , Mitomycin/pharmacology , Protein Array Analysis , Reproducibility of Results , Shiga Toxin 1/agonists , Shiga Toxin 1/metabolism , Shiga Toxin 2/agonists , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/metabolism , United States , United States Department of Agriculture
12.
Int J Food Microbiol ; 173: 99-104, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24413585

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroup O104 have been associated with sporadic cases of illness and have caused outbreaks associated with milk and sprouts. An outbreak that occurred in Europe in 2011 linked to fenugreek sprouts was caused by E. coli O104:H4 that had characteristics of an enteroaggregative E. coli (EAEC) but carried the gene that encoded for Shiga toxin 2. In this study, methods were developed for detection of this enteroaggregative STEC O104, as well as STEC O104 in sprouts. Multiplex PCR assays for enteroaggregative STEC O104:H4 targeted the stx2, aggR, and wzx104 genes, and for STEC O104 targeted the stx1-2, ehxA, and wzx104 genes. After incubating artificially contaminated sprouts at 4 °C for 48 h and overnight enrichment in modified buffered peptone water with pyruvate supplemented with three antibiotics (mBPWp), the pathogens were detected in all samples inoculated at a level of ca. 100CFU/25 g. Several samples inoculated at lower concentrations of ca. 10CFU/25 g were negative by the PCR assays, and this could have been due to cells not surviving or not being able to recover after the stress treatment at 4 °C for 48 h. For isolation of the pathogens, immunomagnetic separation (IMS) using magnetic beads coated with antibodies against O104 were employed, and this was followed by plating the beads onto mRBA and CHROMagar STEC O104 for isolation of E. coli O104:H4 and mRBA and CHROMagar STEC for isolation of E. coli O104:H7. Presumptive colonies were confirmed by agglutination using latex particles attached to antibodies against serogroup O104 and by the multiplex PCR assays. The methodologies described in this study for detection of enteroaggregative STEC O104:H4 and STEC O104 include the use of IMS and latex reagents for serogroup O104, and they enhance the ability to detect and isolate these pathogens from sprouts and potentially other foods, as well.


Subject(s)
Anethum graveolens/microbiology , Food Microbiology , Medicago sativa/microbiology , Shiga-Toxigenic Escherichia coli/physiology , Animals , Europe , Genes, Bacterial/genetics , Immunomagnetic Separation , Multiplex Polymerase Chain Reaction , Shiga-Toxigenic Escherichia coli/isolation & purification
13.
Article in English | MEDLINE | ID: mdl-23267438

ABSTRACT

Escherichia coli O157:H7 and certain non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups have emerged as important public health threats. The development of methods for rapid and reliable detection of this heterogeneous group of pathogens has been challenging. GeneDisc real-time PCR assays were evaluated for detection of the stx(1), stx(2), eae, and ehxA genes and a gene that identifies the O157 serogroup followed by a second GeneDisc assay targeting serogroup-specific genes of STEC O26, O45, O91, O103, O111, O113, O121, O145, and O157. The ability to detect the STEC serogroups in ground beef samples artificially inoculated at a level of ca. 2-20 CFU/25 g and subjected to enrichment in mTSB or buffered peptone water (BPW) was similar. Following enrichment, all inoculated ground beef samples showed amplification of the correct set of target genes carried by each strain. Samples inoculated with STEC serogroups O26, O45, O103, O111, O121, O145, and O157 were subjected to immunomagnetic separation (IMS), and isolation was achieved by plating onto Rainbow agar O157. Colonies were confirmed by PCR assays targeting stx(1), stx(2), eae, and serogroup-specific genes. Thus, this work demonstrated that GeneDisc assays are rapid, sensitive, and reliable and can be used for screening ground beef and potentially other foods for STEC serogroups that are important food-borne pathogens worldwide.


Subject(s)
Bacteriological Techniques/methods , Meat/microbiology , Real-Time Polymerase Chain Reaction/methods , Shiga-Toxigenic Escherichia coli/isolation & purification , DNA, Bacterial/genetics , Immunomagnetic Separation/methods , O Antigens/genetics , Sensitivity and Specificity , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Virulence Factors/genetics
14.
Foodborne Pathog Dis ; 8(5): 601-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21214490

ABSTRACT

Six Shiga toxin-producing Escherichia coli (STEC) serogroups, which include O26, O45, O103, O111, O121, and O145, are responsible for the majority of non-O157 STEC infections in the United States, representing a growing public health concern. Cattle and other ruminants are reservoirs for these pathogens; thus, food of bovine origin may be a vehicle for infection with non-O157 STEC. Methods for detection of these pathogens in animal reservoirs and in food are needed to determine their prevalence and to develop intervention strategies. This study describes a method for detection of non-O157 STEC in ground beef, consisting of enrichment in modified tryptic soy broth at 42°C, followed by real-time multiplex polymerase chain reaction (PCR) assays targeting stx(1), stx(2), and genes in the O-antigen gene clusters of the six serogroups, [corrected] and then immunomagnetic separation (IMS) followed by plating onto Rainbow® Agar O157 and PCR assays for confirmation of isolates. All ground beef samples artificially inoculated with 1-2 and 10-20 CFU/25 g of ground beef consistently gave positive results for all of the target genes, including the internal amplification control using the multiplex real-time PCR assays after enrichment in modified tryptic soy broth for a total of 24 h (6 h at 37°C and 18 h at 42°C). The detection limit of the real-time multiplex PCR assays was ∼50 CFU per PCR. IMS for O26, O103, O111, and O145 was performed with commercially available magnetic beads, and the IMS beads for O45 and O121 were prepared using polyclonal antiserum against these serogroups. A large percentage of the presumptive colonies of each serogroup picked from Rainbow Agar O157 were confirmed as the respective serogroups; however, the percent recovery of STEC O111 was somewhat lower than that of the other serogroups. This work provides a method for detection and isolation in ground beef and potentially other foods of non-O157 STEC of major public health concern.


Subject(s)
Escherichia coli Proteins/genetics , Immunomagnetic Separation/methods , Meat/microbiology , Real-Time Polymerase Chain Reaction/methods , Shiga-Toxigenic Escherichia coli/isolation & purification , Adhesins, Bacterial/genetics , Animals , Cattle , DNA Primers , DNA, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Food Microbiology , Membrane Transport Proteins/genetics , O Antigens/genetics , Sensitivity and Specificity , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/metabolism
15.
J Food Prot ; 70(7): 1663-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17685340

ABSTRACT

A comparison was made of the relative efficiencies of three enrichment media, RapidChek Escherichia coli O157:H7 enrichment broth (REB), R&F broth (RFB), and modified E. coli broth containing novobiocin (mEC+n), and four selective plating media for detection of cold- and freeze-stressed E. coli O157:H7 in raw ground beef. Ground beef (25 g) was inoculated with E. coli O157:H7 at < or =0.5 and < or =2 CFU/g, and samples were then enriched immediately or were stored at 4 degrees C for 72 h or at -20 degrees C for 2 weeks and then enriched. After 8 or 20 h of enrichment, the cultures were plated onto R&F E. coli O157: H7 chromogenic plating medium, cefixime-tellurite sorbitol MacConkey agar, CHROMagar O157, and Rainbow agar O157 and tested using the RapidChek E. coli O157 lateral flow immunoassay and a multiplex PCR assay targeting the E. coli O157: H7 eae, stx1, and stx2 genes. Recovery of E. coli O157:H7 on the four agar media was 4.0 to 7.9 log CFU/ml with the REB enrichment, 1.4 to 7.4 log CFU/ml with RFB, 1.7 to 6.7 log CFU/ml with mEC+n incubated at 42 degrees C, and 1.3 to 3.3 log CFU/ml from mEC+n incubated at 35 degrees C. The percentages of positive ground beef samples containing nonstressed, cold-stressed, and freeze-stressed E. coli O157:H7 as obtained by plating, the immunoassay, and the PCR assay were 97, 88, and 97%, respectively, with REB, 92, 81, and 78%, respectively, with RFB, 97, 58, and 53%, respectively, with mEC+n incubated at 42 degrees C, and 22, 31, and 25%, respectively, with mEC+n incubated at 35 degrees C. Logistic regression analyses of the data indicated significant main effects of treatment, type of medium, enrichment time, inoculum concentration, and detection method. In particular, a positive result was 1.1 times more likely to occur after 20 h of enrichment than after 8 h, 25 times more likely with RFB and REB than with mEC+n at 35 degrees C, 3.7 times more likely with an initial inoculum of < or = 2.0 CFU/g than with < or = 0.5 CFU/g, 2.5 to 3 times more likely using freeze-stressed or nonstressed bacteria than with cold-stressed bacteria, and 2.5 times more likely by plating than by the immunoassay or the PCR assay. REB had better overall performance for enrichment of cold- and freeze-stressed E. coli O157:H7 present in ground beef than did the other media examined.


Subject(s)
Colony Count, Microbial/methods , Escherichia coli O157/isolation & purification , Food Contamination/analysis , Meat Products/microbiology , Agar , Animals , Cattle , Cold Temperature , Consumer Product Safety , Culture Media/chemistry , Food Microbiology , Freezing , Humans , Immunoassay/methods , Polymerase Chain Reaction/methods , Time Factors
16.
Appl Environ Microbiol ; 70(12): 7173-8, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15574914

ABSTRACT

A study was conducted to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in swine feces in the United States as part of the National Animal Health Monitoring System's Swine 2000 study. Fecal samples collected from swine operations from 13 of the top 17 swine-producing states were tested for the presence of STEC. After enrichment of swine fecal samples in tryptic soy broth, the samples were tested for the presence of stx1 and stx2 by use of the TaqMan E. coli STX1 and STX2 PCR assays. Enrichments of samples positive for stx1 and/or stx2 were plated, and colony hybridization was performed using digoxigenin-labeled probes complementary to the stx1 and stx2 genes. Positive colonies were picked and confirmed by PCR for the presence of the stx1, stx2, or stx2e genes, and the isolates were serotyped. Out of 687 fecal samples tested using the TaqMan assays, 70% (484 of 687) were positive for Shiga toxin genes, and 54% (370 of 687), 64% (436 of 687), and 38% (261 of 687) were positive for stx1, stx2, and both toxin genes, respectively. Out of 219 isolates that were characterized, 29 (13%) produced stx1, 14 (6%) produced stx2, and 176 (80%) produced stx2e. Twenty-three fecal samples contained at least two STEC strains that had different serotypes but that had the same toxin genes or included a strain that possessed stx1 in addition to a strain that possessed stx2 or stx2e. The STEC isolates belonged to various serogroups, including O2, O5, O7, O8, O9, OX10, O11, O15, OX18, O20, O57, O65, O68, O69, O78, O91, O96, O100, O101, O120, O121, O152, O159, O160, O163, and O untypeable. It is noteworthy that no isolates of serogroup O157 were recovered. Results of this study indicate that swine in the United States harbor STEC that can potentially cause human illness.


Subject(s)
Escherichia coli/isolation & purification , Feces/microbiology , Population Surveillance/methods , Shiga Toxin 1/biosynthesis , Shiga Toxin 2/biosynthesis , Swine Diseases/epidemiology , Animals , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Humans , Prevalence , Serotyping , Shiga Toxin 1/genetics , Shiga Toxin 2/genetics , Swine , Swine Diseases/microbiology , United States
17.
J Food Prot ; 60(3): 254-261, 1997 Mar.
Article in English | MEDLINE | ID: mdl-31195481

ABSTRACT

The effects of temperature (4,12, and 19°C), pH (5, 6, and 7), and NaCl (5, 25, and 45 g/liter) on the growth of Listeria monocytogenes Scott A in the presence of either Camobacterium piscicola LK5 or 2762 were studied quantitatively in brain heart infusion broth. Strain LK5 produces a bacteriocin that is released into the environment, whereas 2762 appears to produce a bacteriocin that remains cell associated. The primary effect of both C. piscicola strains was a suppression of the maximum population density (MPD) attained by L. monocytogenes . The extent of this depression was dependent on the three culture variables, and appeared to be a function of their influence on the relative growth rates of the two species. The effects were similar with both strains. However, two bacteriocin-negative strains, 2305 and 2818, also depressed the growth of L. monocytogenes . Little of the C. piscicola isolates' ability to suppress L. monocytogenes appeared attributable to bacteriocin production. The MPD-depressing activity of 2762 could not be attributed to peroxide, pH depression, or oxygen depletion. However, MPD suppression may involve nutrient depletion, since the extent of MPD suppression was decreased in a dose-related manner when the two species were cultured in 3 × and 6× brain heart infusion broth.

SELECTION OF CITATIONS
SEARCH DETAIL
...