Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 14(10): 7824-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942874

ABSTRACT

In this study, we report the synthesis and characterization of novel hybrid nanocoating based on carbon nanotubes (CNTs) on anodized aluminum surfaces (AAO). The hybrid nanocoating was deposited by number of methods which include spray coating, spin coating and dip coating. The bonding of nanocoating with metal surface is an important parameter for successful modification of the metal surfaces. The improved adhesion of nanocoating on metal surfaces could be attributed to chemical bonding of sol-gel nanocoating with anodized surfaces. The nanocoated anodized aluminum surfaces showed superior adhesion and excellent anticorrosive properties. The nanocoated panels showed enhanced galvanic protection comparable to 80% of titanium metal as determined by galvanic corrosion measurements. It also showed higher thermal conductivities than stainless steel and bare anodized surfaces.

2.
J Am Chem Soc ; 132(49): 17447-51, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21087015

ABSTRACT

Single-crystalline free-standing hexagonal Fe(1.3)Ge nanowires (NWs) are synthesized for the first time using a chemical vapor transport process without using any catalyst. Interestingly, Fe(1.3)Ge NWs are found to be ferromagnetic at room temperature, while bulk Fe(1.3)Ge has the lower critical temperature of 200 K. We perform first-principles density functional calculations and suggest that the observed strong ferromagnetism is attributed to the reduced distances between Fe atoms, increased number of Fe-Fe bonds, and the enhanced Fe magnetic moments. Both experimental and theoretical studies show that the magnetic moments are enhanced in the NWs, as compared to bulk Fe(1.3)Ge. We also modulate the composition ratio of as-grown iron germanide NWs by adjusting experimental conditions. It is shown that uniaxial strain on the hexagonal plane also enhances the ferromagnetic stability.

3.
Nano Lett ; 10(9): 3643-7, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20677783

ABSTRACT

We report fabrication of Heusler alloy Fe(3)Si nanowires by a diffusion-driven crystal structure transformation method from paramagnetic FeSi nanowires. Magnetic measurements of the Fe(3)Si nanowire ensemble show high-temperature ferromagnetic properties with T(c) >> 370 K. This methodology is also successfully applied to Co(2)Si nanowires in order to obtain metal-rich nanowires (Co) as another evidence of the structural transformation process. Our newly developed nanowire crystal transformation method would be valuable as a general method to fabricate metal-rich silicide nanowires that are otherwise difficult to synthesize.

4.
Adv Mater ; 21(48): 4979-4982, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-25378079

ABSTRACT

Vertically aligned single-crystalline Co5 Ge7 nanowire (NW) and nanobelt arrays are grown on a very thin graphite layer as well as a curved graphite layer with a good epitaxial lattice match. Co5 Ge7 NW arrays, thus grown, show very efficient field emission properties comparable to those of carbon nanotubes and may be used for flexible field emission displays in the future.

5.
J Phys Chem B ; 112(20): 6467-72, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18433158

ABSTRACT

We report here the synthesis of nickel hexacyanoferrate (NiHCF) crystals using calf thymus DNA (CT-DNA) as a template. The double-stranded CT-DNA has been used as a template to self-assemble NiHCF crystals and to produce aggregates having different morphologies at different temperatures. The guided self-assembly behavior of DNA was studied at different temperatures by scanning electron microscopy. The cube-shaped crystals of NiHCF with an average diameter of 400 nm are observed along the DNA framework at room temperature; however, at higher temperatures, the morphology of NiHCF changed from open tubular to dendrimer. The intermediate temperatures show long chains (up to many micrometers) and spherical structures of NiHCF crystals. The micrometer long DNA template plays a key role in the formation of extended arrays of NiHCF crystals, suggesting that the templating action is retained even at the higher temperatures.


Subject(s)
DNA/chemistry , Ferrocyanides/chemistry , Nickel/chemistry , Crystallization , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
6.
Langmuir ; 20(12): 4874-80, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15984244

ABSTRACT

The effect of aniline hydrochloride (AHC) on the size and shape of sodium dodecyl sulfate (SDS) micelles has been investigated by dynamic light scattering. A monotonic decrease in the diffusion coefficient of the micelles was observed with an increase in AHC at fixed SDS concentration. This was ascribed to prolate ellipsoidal growth of the micelles due to decrease of the effective headgroup area/molecule by adsorption of AHC on SDS micelles. The length of the micelles can be tuned by controlling the ratio of concentrations of AHC to SDS. Polymerization of aniline in micelles of different sizes leads to the formation of colloidal polyaniline with variable sizes. A direct correlation between size ofmicelles and size ofpolyaniline particles was observed. Combination of static and dynamic light scattering experiments reveal that the conformations of the polymer do not change significantly with size of the colloid.

7.
Inorg Chem ; 41(22): 5706-15, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12401075

ABSTRACT

Substitutional solid solutions of metal hexacyanometalates in which low-spin iron(III) and cobalt(III) ions populate the carbon-coordinated sites were synthesized and studied by powder diffraction including Rietveld refinement, cyclic voltammetry of immobilized microparticles, diffuse reflection vis-spectrometry, and magnetization techniques. The continuous solid solution series of potassium copper(II), potassium nickel(II), and iron(III) [(hexacyanoferrate(III))(1-x)(hexacyanocobaltate(III))(x)] show that the substitution of low-spin iron(III) by cobalt(III) in the hexacyanometalate units more strongly affects the formal potentials of the nitrogen-coordinated copper(II) and high-spin iron(III) ions than those of the remaining low-spin iron(III) ions. In the case of copper(II) and iron(III) [(hexacyanoferrate(III))(1-x)(hexacyanocobaltate(III))(x)] the peak currents decrease much more than can be explained by stoichiometry, indicating that the charge propagation is slowed by the substitution of low-spin iron(III) by cobalt(III). The Rietveld refinement of all compounds confirmed the structure initially proposed by Keggin for Prussian blue and contradicts the structure described later by Ludi. The dependencies of lattice parameters on composition exhibit in all series of solid solutions studied similar, although small, deviations from ideality, which correlate with the electrochemical behavior. Finally, a series of solid solutions of the composition KNi(0.5)(II)Cu(0.5)(II)[Fe(III)(CN)(6)](1-x)[Co(III)(CN)(6)](x), where both the nitrogen- and carbon-coordinated metal ions are mixed populated and were synthesized and characterized. These are the first examples of solid solutions of metal hexacyanometalates with four different metal ions, where both the nitrogen- and the carbon-coordinated sites possess a mixed population.

SELECTION OF CITATIONS
SEARCH DETAIL
...