Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 47(W1): W511-W515, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31073612

ABSTRACT

RNA has become one of the major research topics in molecular biology. As a central player in key processes regulating gene expression, RNA is in the focus of many efforts to decipher the pathways that govern the transition of genetic information to a fully functional cell. As more and more researchers join this endeavour, there is a rapidly growing demand for comprehensive collections of tools that cover the diverse layers of RNA-related research. However, increasing amounts of data, from diverse types of experiments, addressing different aspects of biological questions need to be consolidated and integrated into a single framework. Only then is it possible to connect findings from e.g. RNA-Seq experiments and methods for e.g. target predictions. To address these needs, we present the RNA Workbench 2.0 , an updated online resource for RNA related analysis. With the RNA Workbench we created a comprehensive set of analysis tools and workflows that enables researchers to analyze their data without the need for sophisticated command-line skills. This update takes the established framework to the next level, providing not only a containerized infrastructure for analysis, but also a ready-to-use platform for hands-on training, analysis, data exploration, and visualization. The new framework is available at https://rna.usegalaxy.eu , and login is free and open to all users. The containerized version can be found at https://github.com/bgruening/galaxy-rna-workbench.


Subject(s)
RNA/chemistry , Software , High-Throughput Nucleotide Sequencing , Sequence Analysis, RNA
2.
Methods Mol Biol ; 1912: 111-132, 2019.
Article in English | MEDLINE | ID: mdl-30635892

ABSTRACT

During the last decade, ncRNAs have been investigated intensively and revealed their regulatory role in various biological processes. Worldwide research efforts have identified numerous ncRNAs and multiple RNA subtypes, which are attributed to diverse functionalities known to interact with different functional layers, from DNA and RNA to proteins. This makes the prediction of functions for newly identified ncRNAs challenging. Current bioinformatics and systems biology approaches show promising results to facilitate an identification of these diverse ncRNA functionalities. Here, we review (a) current experimental protocols, i.e., for Next Generation Sequencing, for a successful identification of ncRNAs; (b) sequencing data analysis workflows as well as available computational environments; and (c) state-of-the-art approaches to functionally characterize ncRNAs, e.g., by means of transcriptome-wide association studies, molecular network analyses, or artificial intelligence guided prediction. In addition, we present a strategy to cover the identification and functional characterization of unknown transcripts by using connective workflows.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks/genetics , RNA, Untranslated/isolation & purification , Workflow , Animals , Artificial Intelligence , Computational Biology/instrumentation , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Nucleic Acid Conformation , RNA, Untranslated/chemistry , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Sequence Analysis, RNA/instrumentation , Sequence Analysis, RNA/methods , Structure-Activity Relationship , Transcriptome/genetics
3.
Methods Mol Biol ; 1912: 199-214, 2019.
Article in English | MEDLINE | ID: mdl-30635895

ABSTRACT

MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. The use of RNA data in gene expression analysis has become increasingly important to gain insights into the regulatory mechanisms behind miRNA-mRNA interactions. As a result, we are confronted with a growing landscape of tools, while standards for reproducibility and benchmarking lag behind. This work identifies the challenges for reproducible RNA analysis, and highlights best practices on the processing and dissemination of scientific results. We found that the success of a tool does not solely depend on its performances: equally important is how a tool is received, and then supported within a community. This leads us to a detailed presentation of the RNA workbench, a community effort for sharing workflows and processing tools, built on top of the Galaxy framework. Here, we follow the community guidelines to extend its portfolio of RNA tools with the integration of the TriplexRNA ( https://triplexrna.org ). Our findings provide the basis for the development of a recommendation system, to guide users in the choice of tools and workflows.


Subject(s)
Computational Biology/methods , MicroRNAs/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Computational Biology/instrumentation , Gene Expression Regulation , Humans , Information Dissemination , MicroRNAs/genetics , RNA, Messenger/genetics , Reproducibility of Results , Sequence Analysis, RNA/instrumentation , Software , Workflow
4.
Cell Syst ; 6(6): 752-758.e1, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29953864

ABSTRACT

The primary problem with the explosion of biomedical datasets is not the data, not computational resources, and not the required storage space, but the general lack of trained and skilled researchers to manipulate and analyze these data. Eliminating this problem requires development of comprehensive educational resources. Here we present a community-driven framework that enables modern, interactive teaching of data analytics in life sciences and facilitates the development of training materials. The key feature of our system is that it is not a static but a continuously improved collection of tutorials. By coupling tutorials with a web-based analysis framework, biomedical researchers can learn by performing computation themselves through a web browser without the need to install software or search for example datasets. Our ultimate goal is to expand the breadth of training materials to include fundamental statistical and data science topics and to precipitate a complete re-engineering of undergraduate and graduate curricula in life sciences. This project is accessible at https://training.galaxyproject.org.


Subject(s)
Computational Biology/education , Computational Biology/methods , Research Personnel/education , Curriculum , Data Analysis , Education, Distance/methods , Education, Distance/trends , Humans , Software
5.
BMC Syst Biol ; 12(1): 53, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29650016

ABSTRACT

BACKGROUND: A useful model is one that is being (re)used. The development of a successful model does not finish with its publication. During reuse, models are being modified, i.e. expanded, corrected, and refined. Even small changes in the encoding of a model can, however, significantly affect its interpretation. Our motivation for the present study is to identify changes in models and make them transparent and traceable. METHODS: We analysed 13734 models from BioModels Database and the Physiome Model Repository. For each model, we studied the frequencies and types of updates between its first and latest release. To demonstrate the impact of changes, we explored the history of a Repressilator model in BioModels Database. RESULTS: We observed continuous updates in the majority of models. Surprisingly, even the early models are still being modified. We furthermore detected that many updates target annotations, which improves the information one can gain from models. To support the analysis of changes in model repositories we developed MoSt, an online tool for visualisations of changes in models. The scripts used to generate the data and figures for this study are available from GitHub https://github.com/binfalse/BiVeS-StatsGenerator and as a Docker image at https://hub.docker.com/r/binfalse/bives-statsgenerator/ . The website https://most.bio.informatik.uni-rostock.de/ provides interactive access to model versions and their evolutionary statistics. CONCLUSION: The reuse of models is still impeded by a lack of trust and documentation. A detailed and transparent documentation of all aspects of the model, including its provenance, will improve this situation. Knowledge about a model's provenance can avoid the repetition of mistakes that others already faced. More insights are gained into how the system evolves from initial findings to a profound understanding. We argue that it is the responsibility of the maintainers of model repositories to offer transparent model provenance to their users.


Subject(s)
Models, Biological , Databases, Factual , Internet
6.
J Biotechnol ; 261: 85-96, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28676233

ABSTRACT

RNA-Sequencing (RNA-Seq) has become a widely used approach to study quantitative and qualitative aspects of transcriptome data. The variety of RNA-Seq protocols, experimental study designs and the characteristic properties of the organisms under investigation greatly affect downstream and comparative analyses. In this review, we aim to explain the impact of structured pre-selection, classification and integration of best-performing tools within modularized data analysis workflows and ready-to-use computing infrastructures towards experimental data analyses. We highlight examples for workflows and use cases that are presented for pro-, eukaryotic and mixed dual RNA-Seq (meta-transcriptomics) experiments. In addition, we are summarizing the expertise of the laboratories participating in the project consortium "Structured Analysis and Integration of RNA-Seq experiments" (de.STAIR) and its integration with the Galaxy-workbench of the RNA Bioinformatics Center (RBC).


Subject(s)
Computational Biology , RNA , Sequence Analysis, RNA , Transcriptome , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , RNA/analysis , RNA/genetics , RNA/metabolism
7.
Nucleic Acids Res ; 45(W1): W560-W566, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28582575

ABSTRACT

RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis. AVAILABILITY: The RNA workbench is available at https://github.com/bgruening/galaxy-rna-workbench.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA/chemistry , Sequence Analysis, RNA/methods , Software , Computational Biology , Internet , Nucleic Acid Conformation , RNA/metabolism , RNA, Untranslated/chemistry , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...