Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dent J (Basel) ; 6(4)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30544668

ABSTRACT

BACKGROUND: This study aimed to characterize and test the antimicrobial susceptibility of Lactococcus lactis isolated in endodontic infections in Burkina Faso. MATERIAL AND METHODS: This was a prospective study conducted at the Municipal Oral Health Center of Ouagadougou, Burkina Faso, from June to October 2014. Clinical data were collected using a questionnaire form. The method of streaking on selective medium was used to isolate bacteria. Identification was made using the API 20 Strep gallery. Antibiotic susceptibility was performed by the diffusion method on solid medium. RESULTS: One hundred and twenty-five (125) patients were received with a significant proportion from the age group of 19 to 40 years (55.2%). Apical periodontitis accounted for 50.4% and cellulitis for 49.6% of cases. Lactococcus lactis ssp. lactis was identified in five exudate samples. Isolates were 100% resistant to cefixime and metronidazole, 80% to ceftriaxone, cefuroxime, cefotaxime, chloramphenicol and 60% to penicillin G, amoxicillin, amoxicillin clavulanic acid. A multidrug resistance of more than three families of antibiotics was noticed. No strains produced extended spectrum ß-lactamases. CONCLUSION: Lactococcus lactis is part of endodontic biofilm. The reported strong antibiotic resistance involving endodontic therapy will focus on the effect of the disinfectant solution and the mechanical action of the canal instruments.

2.
Eur J Microbiol Immunol (Bp) ; 7(3): 168-175, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29034106

ABSTRACT

The emergence and persistence of multidrug-resistant (MDR) diarrheagenic Escherichia coli (DEC) causing acute diarrhea is a major public health challenge in developing countries. The aim of this study was to evaluate the resistance phenotypes of DEC isolated from stool samples collected from children less than 5 years of age with acute diarrhea living in Ouagadougou/Burkina Faso. From August 2013 to October 2015, this study was carried out on 31 DEC strains of our study conducted in "Centre Médical avec Antenne Chirurgicale (CMA)" Paul VI and CMA of Schiphra. DEC were isolated and identified by standard microbiological methods and polymerase chain reaction (PCR) method was used to further characterize them. Antimicrobial susceptibility testing was done based on the disk diffusion method. DEC isolates were high resistant to tetracycline (83.9%), amoxicillin (77.4%), amoxicillin clavulanic acid (77.4%), piperacillin (64.5%), and colistin sulfate (61.3%). The most resistant phenotype represented was the extended spectrum ß-lactamase (ESBL) phenotype (67.7%). Aminoglycosides were 100% active on enteroinvasive E. coli (EIEC) and enterohemorrhagic E. coli (EHEC). All the DEC isolates exhibited absolute (100%) sensitivity to ciprofloxacin. Monitoring and studying the resistance profile of DEC to antibiotics are necessary to guide probabilistic antibiotic therapy, especially in pediatric patients.

3.
Article in English | MEDLINE | ID: mdl-28937656

ABSTRACT

Cattle farming can promote diarrheal disease transmission through waste, effluents or cattle fecal matter. The study aims to characterize the diarrheagenic Escherichia coli (DEC) isolated from cattle feces, manure in the composting process and slurry, collected from four cattle markets in Ouagadougou. A total of 585 samples (340 cattle feces, 200 slurries and 45 manures in the composting process) were collected from the four cattle markets between May 2015 and May 2016. A multiplex Polymerase Chain Reaction (PCR), namely 16-plex PCR, was used to screen simultaneously the virulence genes specific for shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC). DEC was detected in 10.76% of samples. ETEC was the most prevalent (9.91%). STEC and EAEC have been observed with the same rate (0.51%). ETEC were detected in 12.64% of cattle feces, in 6.66% of manure in the composting process and in 5% of slurry. STEC were detected in 0.58% of cattle feces and in 2.22% of manure in the composting process. EAEC was detected only in 1% of slurry and in 2.22% of manure in the composting process. ETEC strains were identified based on estIa gene and/or estIb gene and/or elt gene amplification. Of the 58 ETEC, 10.34% contained astA, 17.24% contained elt, 3.44% contained estIa and 79.31% contained estIb. The two positive EAEC strains contained only the aggR gene, and the third was positive only for the pic gene. The results show that effluent from cattle markets could contribute to the spreading of DEC in the environment in Burkina Faso.


Subject(s)
Diarrhea/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/isolation & purification , Manure/microbiology , Virulence Factors/genetics , Animal Husbandry , Animals , Burkina Faso , Cattle , Environmental Monitoring , Humans , Multiplex Polymerase Chain Reaction , Polymerase Chain Reaction , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...