Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004993

ABSTRACT

Nanoparticles of iron carbides and nitrides enclosed in graphite shells were obtained at 2 ÷ 8 GPa pressures and temperatures of around 800 °C from ferrocene and ferrocene-melamine mixture. The average core-shell particle size was below 60 nm. The graphite-like shells over the iron nitride cores were built of concentric graphene layers packed in a rhombohedral shape. It was found that at a pressure of 4 GPa and temperature of 800 °C, the stability of the nanoscale phases increases in a Fe7C3 > Fe3C > Fe3N1+x sequence and at 8 GPa in a Fe3C > Fe7C3 > Fe3N1+x sequence. At pressures of 2 ÷ 8 GPa and temperatures up to 1600 °C, iron nitride Fe3N1+x is more stable than iron carbides. At 8 GPa and 1600 °C, the average particle size of iron nitride increased to 0.5 ÷ 1 µm, while simultaneously formed free carbon particles had the shape of graphite discs with a size of 1 ÷ 2 µm. Structural refinement of the iron nitride using the Rietveld method gave the best result for the space group P6322. The refined composition of the samples obtained from a mixture of ferrocene and melamine at 8 GPa/800 °C corresponded to Fe3N1.208, and at 8 GPa/1650 °C to Fe3N1.259. The iron nitride core-shell nanoparticles exhibited magnetic behavior. Specific magnetization at 7.5 kOe of pure Fe3N1.208 was estimated to be 70 emu/g. Compared to other methods, the high-pressure method allows easy synthesis of the iron nitride cores inside pure carbon shells and control of the particle size. And in general, pressure is a good tool for modifying the phase and chemical composition of the iron-containing cores.

2.
Nano Lett ; 22(7): 2589-2594, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35302763

ABSTRACT

Two novel properties, unique for semiconductors, a negative electron affinity and a high p-type surface electrical conductivity, were discovered in diamond at the end of the last century. Both properties appear when the diamond surface is hydrogenated. A natural question arises: is the influence of the surface hydrogen on diamond limited only to the electrical properties? Here, for the first time to our knowledge, we observe a transparency peak at 1328 cm-1 in the infrared absorption of hydrogen-terminated pure (undoped) nanodiamonds. This new optical property is ascribed to Fano-type destructive interference between zone-center optical phonons and free carriers (holes) appearing in the near-surface layer of hydrogenated nanodiamond. This work opens the way to explore the physics of electron-phonon coupling in undoped semiconductors and promises the application of H-terminated nanodiamonds as a new optical material with induced transparency in the infrared optical range.

SELECTION OF CITATIONS
SEARCH DETAIL
...