Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 89: 102423, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38875923

ABSTRACT

Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation. Disorders that affect mitochondria have a major impact in muscle development and function. Here we studied the role of mitochondria during chick skeletal myogenesis. We analyzed the intracellular distribution of mitochondria in myoblasts, fibroblasts and myotubes using Mitotracker labeling. Mitochondrial respiration was investigated in chick muscle cells. Our results show that (i) myoblasts and myotubes have more mitochondria than muscle fibroblasts; (ii) mitochondria are organized in long lines within the whole cytoplasm and around the nuclei of myotubes, while in myoblasts they are dispersed in the cytoplasm; (iii) the area of mitochondria in myotubes increases during myogenesis, while in myoblasts and fibroblasts there is a slight decrease; (iv) mitochondrial length increases in the three cell types (myoblasts, fibroblasts and myotubes) during myogenesis; (v) the distance of mitochondria to the nucleus increases in myoblasts and myotubes during myogenesis; (vi) Rotenone inhibits muscle fiber formation, while FCCP increases the size of myotubes; (vii) N-acetyl cysteine (NAC), an inhibitor of ROS formation, rescues the effects of Rotenone on muscle fiber size; and (viii) Rotenone induces the production of ROS in chick myogenic cells. The collection of our results suggests a role of ROS signaling in mitochondrial function during chick myogenesis.

2.
Cells ; 11(21)2022 10 27.
Article in English | MEDLINE | ID: mdl-36359798

ABSTRACT

Lysosomes are highly dynamic organelles involved in the breakdown and recycling of macromolecules, cell cycle, cell differentiation, and cell death, among many other functions in eukaryotic cells. Recently, lysosomes have been identified as cellular hubs for the modulation of intracellular signaling pathways, such as the Wnt/beta-catenin pathway. Here we analyzed morphological and functional characteristics of lysosomes in muscle and non-muscle cells during chick myogenesis, as well as their modulation by the Wnt/beta-catenin pathway. Our results show that (i) muscle and non-muscle cells show differences in lysosomal size and its distribution, (ii) lysosomes are found in spherical structures in myoblasts and fibroblasts and tubular structures in myotubes, (iii) lysosomes are found close to the plasma membrane in fibroblasts and close to the nucleus in myoblasts and myotubes, (iv) lysosomal distribution and size are dependent on the integrity of microtubules and microfilaments in myogenic cells, (v) alterations in lysosomal function, in the expression of LAMP2, and in Wnt/beta-catenin pathway affect the distribution and size of lysosomes in myogenic cells, (vi) the effects of the knockdown of LAMP2 on myogenesis can be rescued by the activation of the Wnt/beta-catenin pathway, and (vii) the chloroquine Lys05 is a potent inhibitor of both the Wnt/beta-catenin pathway and lysosomal function. Our data highlight the involvement of the Wnt/beta-catenin pathway in the regulation of the positioning, size, and function of lysosomes during chick myogenesis.


Subject(s)
Muscle Development , beta Catenin , beta Catenin/metabolism , Muscle Development/physiology , Wnt Signaling Pathway , Muscle Fibers, Skeletal/metabolism , Cytoskeleton/metabolism , Lysosomes/metabolism
3.
J Muscle Res Cell Motil ; 43(2): 73-86, 2022 06.
Article in English | MEDLINE | ID: mdl-34410584

ABSTRACT

The formation of skeletal muscle fibers is an intricate process controlled by a multitude of signaling pathways, including Wnt, Shh, and FGF. However, the role of the Hippo pathway during vertebrate myofiber formation has conflicting reports, which we decided to address in chick muscle cultures. We found that the transcriptional regulator Yes-associated protein (YAP) was highly concentrated within the nuclei of myoblasts. As cells differentiate into myotubes, YAP localization shifted to the cell cytoplasm in more mature myotubes. Treatment of cultures with XMU-MP-1 (XMU), a MST1/2 inhibitor, stimulated the nuclear localization of YAP in myoblasts and in myotubes, upregulated myogenin, and promoted myoblast fusion, ultimately resulting in the formation of large and fully striated multinucleated myotubes. The XMU-induced phenotype was blocked by the protein kinase C (PKC) inhibitor calphostin, which raises the possibility that the Hippo pathway controls the growth of skeletal muscle fibers through a PKC-dependent mechanism.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Cell Differentiation , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Signal Transduction/genetics
4.
Int J Mol Sci ; 22(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34884689

ABSTRACT

LMO7 is a multifunctional PDZ-LIM protein that can interact with different molecular partners and is found in several intracellular locations. The aim of this work was to shed light on LMO7 evolution, alternative transcripts, protein structure and gene regulation through multiple in silico analyses. We also explored the intracellular distribution of the LMO7 protein in chicken and zebrafish embryonic skeletal muscle cells by means of confocal fluorescence microscopy. Our results revealed a single LMO7 gene in mammals, sauropsids, Xenopus and in the holostean fish spotted gar while two lmo7 genes (lmo7a and lmo7b) were identified in teleost fishes. In addition, several different transcripts were predicted for LMO7 in human and in major vertebrate model organisms (mouse, chicken, Xenopus and zebrafish). Bioinformatics tools revealed several structural features of the LMO7 protein including intrinsically disordered regions. We found the LMO7 protein in multiple intracellular compartments in chicken and zebrafish skeletal muscle cells, such as membrane adhesion sites and the perinuclear region. Curiously, the LMO7 protein was detected within the nuclei of muscle cells in chicken but not in zebrafish. Our data showed that a conserved regulatory element may be related to muscle-specific LMO7 expression. Our findings uncover new and important information about LMO7 and open new challenges to understanding how the diverse regulation, structure and distribution of this protein are integrated into highly complex vertebrate cellular milieux, such as skeletal muscle cells.


Subject(s)
Evolution, Molecular , LIM Domain Proteins/metabolism , Models, Molecular , Muscle Fibers, Skeletal/metabolism , Transcription Factors/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Chickens , Computer Simulation , Humans , LIM Domain Proteins/genetics , Mice , Models, Animal , Protein Conformation , Transcription Factors/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...