Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Appl Physiol (1985) ; 131(4): 1241-1250, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34473575

ABSTRACT

Due to the invasiveness of a muscle biopsy, there is fragmentary information on the existence and possible origin of a sexual dimorphism in the skeletal muscle concentrations of the energy delivery-related metabolites carnosine, creatine, and carnitine. As these metabolites can be noninvasively monitored by proton magnetic resonance spectroscopy, this technique offers the possibility to investigate if sexual dimorphisms are present in an adult reference population and if these dimorphisms originated during puberty using a longitudinal design. Concentrations of carnosine, creatine, and carnitine were examined using proton magnetic resonance spectroscopy in the soleus and gastrocnemius muscles of an adult reference population of female (n = 50) and male adults (n = 50). For the longitudinal follow-up over puberty, 29 boys and 28 girls were scanned prepuberty. Six years later, 24 boys and 24 girls were rescanned postpuberty. A sexual dimorphism was present in carnosine and creatine, but not carnitine, in the adult reference population. Carnosine was 28.5% higher in the gastrocnemius (P < 0.001) and carnosine and creatine were respectively 19.9% (P < 0.001) and 18.2% (P < 0.001) higher in the soleus of male when compared with female adults. Through puberty, carnosine increased more in male subjects compared with female subjects, both in the gastrocnemius (+10.43% and -10.83%, respectively; interaction effect: P = 0.002) and in the soleus (+24.30% and +5.49%, respectively; interaction effect: P = 0.012). No significant effect of puberty was found in either creatine (interaction effect: P = 0.307) or carnitine (interaction effect: P = 0.066). A sexual dimorphism in the adult human muscle is present in carnosine and creatine, but not in carnitine.NEW & NOTEWORTHY This is the first study to investigate sexual dimorphisms in skeletal muscle carnosine, creatine, and carnitine concentrations in a substantial adult reference population (n = 100). A sexual dimorphism is present in both carnosine and creatine at adult age. The origin of the sexual dimorphisms is investigated using a longitudinal design over puberty in 24 males and 24 females. The sexual dimorphism in carnosine originated partly during puberty for carnosine, but not for creatine.


Subject(s)
Carnosine , Adult , Carnitine , Creatine , Female , Follow-Up Studies , Humans , Male , Muscle, Skeletal , Puberty
2.
Br J Nutr ; 119(7): 759-770, 2018 04.
Article in English | MEDLINE | ID: mdl-29569535

ABSTRACT

Balanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control, n 10), vegetarian diet without supplementation (Veg+Pla, n 15) and vegetarian diet combined with daily ß-alanine (0·8-0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl, n 15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 and P=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect. 1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.


Subject(s)
Carnitine/metabolism , Carnosine/metabolism , Creatine/metabolism , Diet, Vegetarian , Homeostasis/physiology , Adolescent , Adult , Female , Humans , Young Adult
3.
Med Sci Sports Exerc ; 49(3): 602-609, 2017 03.
Article in English | MEDLINE | ID: mdl-28106620

ABSTRACT

PURPOSE: Carnosine is a dipeptide composed of ß-alanine and L-histidine and is present in skeletal muscle. Chronic oral ß-alanine supplementation can induce muscle carnosine loading and is therefore seen as the rate-limiting factor for carnosine synthesis. However, the effect of L-histidine supplementation on carnosine levels in humans is never established. This study aims to investigate whether 1) L-histidine supplementation can induce muscle carnosine loading and 2) combined supplementation of both amino acids is more efficient than ß-alanine supplementation alone. METHODS: Fifteen male and 15 female participants were equally divided in three groups. Each group was supplemented with either pure ß-alanine (BA) (6 g·d), L-histidine (HIS) (3.5 g·d), or both amino acids (BA + HIS). Before (D0), after 12 d (D12), and after 23 d (D23) of supplementation, carnosine content was evaluated in soleus and gastrocnemius medialis muscles by H-MRS, and venous blood samples were collected. Muscle biopsies were taken at D0 and D23 from the vastus lateralis. Plasma and muscle metabolites (ß-alanine, histidine, and carnosine) were measured by high-performance liquid chromatography. RESULTS: Both BA and BA + HIS groups showed increased carnosine concentrations in all investigated muscles, with no difference between these groups. By contrast, carnosine levels in the HIS group remained unaltered. Histidine levels were significantly decreased in plasma (-30.6%) and muscle (-31.6%) of the BA group, and this was prevented when ß-alanine and L-histidine were supplemented simultaneously. CONCLUSION: We confirm that ß-alanine, and not L-histidine, is the rate-limiting precursor for carnosine synthesis in human skeletal muscle. Yet, although L-histidine is not rate limiting, its availability is not unlimited and gradually declines upon chronic ß-alanine supplementation. The significance of this decline still needs to be determined, but may affect physiological processes such as protein synthesis.


Subject(s)
Carnosine/metabolism , Dietary Supplements , Histidine/administration & dosage , Muscle, Skeletal/metabolism , beta-Alanine/administration & dosage , Diet , Female , Histidine/blood , Histidine/metabolism , Humans , Male , Taurine/blood , Taurine/metabolism , Young Adult , beta-Alanine/blood , beta-Alanine/metabolism
4.
Front Nutr ; 2: 13, 2015.
Article in English | MEDLINE | ID: mdl-25988141

ABSTRACT

PURPOSE: Beta-alanine (BA) supplementation has been shown to augment muscle carnosine concentration, thereby promoting high-intensity (HI) exercise performance. Trained muscles of athletes have a higher increase in carnosine concentration after BA supplementation compared to untrained muscles, but it remains to be determined whether this is due to an accumulation of acute exercise effects or to chronic adaptations from prior training. The aim of the present study was to investigate whether high-volume (HV) and/or HI exercise can improve BA-induced carnosine loading in untrained subjects. METHODS: All participants (n = 28) were supplemented with 6.4 g/day of BA for 23 days. The subjects were allocated to a control group, HV, or HI training group. During the BA supplementation period, the training groups performed nine exercise sessions, consisting of either 75-90 min continuous cycling at 35-45% Wmax (HV) or 3 to 5 repeats of 30 s cycling at 165% Wmax with 4 min recovery (HI). Carnosine content was measured in soleus and gastrocnemius medialis by proton magnetic resonance spectroscopy. RESULTS: There was no difference in absolute increase in carnosine content between the groups in soleus and gastrocnemius muscle. For the average muscle carnosine content, a higher absolute increase was found in HV (+2.95 mM; P = 0.046) and HI (+3.26 mM; P = 0.028) group compared to the control group (+1.91 mM). However, there was no additional difference between the HV and HI training group. CONCLUSION: HV and HI exercise training showed no significant difference on BA-induced muscle carnosine loading in soleus and gastrocnemius muscle. It can be suggested that there can be a small cumulative effect of exercise on BA supplementation efficiency, although differences did not reach significance on individual muscle level.

5.
Int J Sport Nutr Exerc Metab ; 24(3): 315-24, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24457999

ABSTRACT

Muscle carnosine loading through chronic oral beta-alanine supplementation has been shown to be effective for short-duration, high-intensity exercise. This randomized, placebo-controlled study explored whether the ergogenic effect of beta-alanine supplementation is also present for longer duration exercise. Subjects (27 well-trained cyclists/triathletes) were supplemented with either beta-alanine or placebo (6.4 g/day) for 6 weeks. Time to completion and physiological variables for a 1-hr cycling time-trial were compared between preand postsupplementation. Muscle carnosine concentration was also assessed via proton magnetic resonance spectroscopy before and after supplementation. Following beta-alanine supplementation, muscle carnosine concentration was increased by 143 ± 151% (mean ± SD; p < .001) in the gastrocnemius and 161 ± 56% (p < .001) in the soleus. Postsupplementation time trial performance was significantly slower in the placebo group (60.6 ± 4.4-63.0 ± 5.4 min; p < .01) and trended toward a slower performance following beta-alanine supplementation (59.8 ± 2.8-61.7 ± 3.0 min; p = .069). We found an increase in lactate/proton concentration ratio following beta-alanine supplementation during the time-trial (209.0 ± 44.0 (beta-alanine) vs. 161.9 ± 54.4 (placebo); p < .05), indicating that a similar lactate concentration was accompanied by a lower degree of systemic acidosis, even though this acidosis was quite moderate (pH ranging from 7.30 to 7.40). In conclusion, chronic beta-alanine supplementation in well-trained cyclists had a very pronounced effect on muscle carnosine concentration and a moderate attenuating effect on the acidosis associated with lactate accumulation, yet without affecting 1-h time-trial performance under laboratory conditions.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Carnosine/metabolism , Exercise/physiology , Muscle, Skeletal , Physical Endurance/drug effects , beta-Alanine/pharmacology , Acidosis/prevention & control , Dietary Supplements , Humans , Hydrogen-Ion Concentration , Lactic Acid/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Exertion/drug effects
6.
J Appl Physiol (1985) ; 116(5): 553-9, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24408989

ABSTRACT

Given the ergogenic properties of ß-alanyl-L-histidine (carnosine) in skeletal muscle, it can be hypothesized that elevated levels of circulating carnosine could equally be advantageous for high-intensity exercises. Serum carnosinase (CN1), the enzyme hydrolyzing the dipeptide, is highly active in the human circulation. Consequently, dietary intake of carnosine usually results in rapid degradation upon absorption, yet this is less pronounced in subjects with low CN1 activity. Therefore, acute carnosine supplementation before high-intensity exercise could be ergogenic in these subjects. In a cross-sectional study, we determined plasma CN1 activity and content in 235 subjects, including 154 untrained controls and 45 explosive and 36 middle- to long-distance elite athletes. In a subsequent double-blind, placebo-controlled, crossover study, 12 men performed a cycling capacity test at 110% maximal power output (CCT 110%) following acute carnosine (20 mg/kg body wt) or placebo supplementation. Blood samples were collected to measure CN1 content, carnosine, and acid-base balance. Both male and female explosive athletes had significantly lower CN1 activity (14% and 21% lower, respectively) and content (30% and 33% lower, respectively) than controls. Acute carnosine supplementation resulted only in three subjects in carnosinemia. The CCT 110% performance was not improved after carnosine supplementation, even when accounting for low/high CN1 content. No differences were found in acid-base balance, except for elevated resting bicarbonate following carnosine supplementation and in low CN1 subjects. In conclusion, explosive athletes have lower serum CN1 activity and content compared with untrained controls, possibly resulting from genetic selection. Acute carnosine supplementation does not improve high-intensity performance.


Subject(s)
Dipeptidases/blood , Exercise/physiology , Acid-Base Equilibrium/physiology , Adolescent , Adult , Bicarbonates/blood , Carnosine/pharmacology , Colorimetry , Creatine Kinase/metabolism , Cross-Over Studies , Cross-Sectional Studies , Dietary Supplements , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Ferric Compounds/blood , Ferric Compounds/metabolism , Humans , Male , Middle Aged , Oxidation-Reduction , Sports , Thiobarbituric Acid Reactive Substances , Young Adult
7.
Amino Acids ; 43(1): 13-20, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22170500

ABSTRACT

The dipeptide carnosine is found in high concentrations in human skeletal muscle and shows large inter-individual differences. Sex and age are determining factors, however, systematic studies investigating the sex effects on muscle carnosine content throughout the human lifespan are lacking. Despite the large inter-individual variation, the intra-individual variation is limited. The question may be asked whether the carnosine content is a muscle characteristic which may be largely genetically determined. A total of 263 healthy male and female subjects of 9-83 years were divided into five different age groups: prepubertal children (PC), adolescents (A), young adults (YA), middle adults (MA) and elderly (E). We included 25 monozygotic and 22 dizygotic twin pairs among the entire study population to study the heritability. The carnosine content was measured non-invasively in the gastrocnemius medialis and soleus by proton magnetic resonance spectroscopy (1H-MRS). In boys, carnosine content was significantly higher (gastrocnemius 22.9%; soleus 44.6%) in A compared to PC, while it did not differ in girls. A decrease (~16%) was observed both in males and females from YA to MA. However, elderly did not have lower carnosine levels in comparison with MA. Higher correlations were found in monozygotic (r=0.86) compared to dizygotic (r=0.51) twins, in soleus muscle, but not in gastrocnemius. In conclusion, this study found an effect of puberty on muscle carnosine content in males, but not in females. Muscle carnosine decreased mainly during early adulthood and hardly from adulthood to elderly. High intra-twin correlations were observed, but muscle-dependent differences preclude clear conclusions toward heritability.


Subject(s)
Carnosine/analysis , Muscle, Skeletal/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Muscle, Skeletal/chemistry , Sex Factors , Twins/genetics , Young Adult
8.
PLoS One ; 6(7): e21956, 2011.
Article in English | MEDLINE | ID: mdl-21760934

ABSTRACT

BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1)H-MRS). Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1)H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and diseases that are characterized by an altered muscle fiber type composition.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Physiology/methods , Athletes , Carnosine/metabolism , Female , Humans , Male , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/metabolism
9.
Eur J Appl Physiol ; 111(10): 2571-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21373871

ABSTRACT

Carnosine is an abundant dipeptide in human skeletal muscle with proton buffering capacity. There is controversy as to whether training can increase muscle carnosine and thereby provide a mechanism for increased buffering capacity. This study investigated the effects of 5 weeks sprint training combined with a vegetarian or mixed diet on muscle carnosine, carnosine synthase mRNA expression and muscle buffering capacity. Twenty omnivorous subjects participated in a 5 week sprint training intervention (2-3 times per week). They were randomized into a vegetarian and mixed diet group. Measurements (before and after the intervention period) included carnosine content in soleus, gastrocnemius lateralis and tibialis anterior by proton magnetic resonance spectroscopy ((1)H-MRS), true-cut biopsy of the gastrocnemius lateralis to determine in vitro non-bicarbonate muscle buffering capacity, carnosine content (HPLC method) and carnosine synthase (CARNS) mRNA expression and 6 × 6 s repeated sprint ability (RSA) test. There was a significant diet × training interaction in soleus carnosine content, which was non-significantly increased (+11%) with mixed diet and non-significantly decreased (-9%) with vegetarian diet. Carnosine content in other muscles and gastrocnemius buffer capacity were not influenced by training. CARNS mRNA expression was independent of training, but decreased significantly in the vegetarian group. The performance during the RSA test improved by training, without difference between groups. We found a positive correlation (r = 0.517; p = 0.002) between an invasive and non-invasive method for muscle carnosine quantification. In conclusion, this study shows that 5 weeks sprint training has no effect on the muscle carnosine content and carnosine synthase mRNA.


Subject(s)
Carnosine/metabolism , Diet, Vegetarian , Diet , Muscle, Skeletal/metabolism , Muscular Diseases/prevention & control , Physical Education and Training/methods , Running/physiology , Acceleration , Adult , Athletic Performance/physiology , Buffers , Carnosine/analysis , Carnosine/physiology , Combined Modality Therapy , Female , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Male , Muscle, Skeletal/chemistry , Muscular Diseases/metabolism , Young Adult
10.
Amino Acids ; 40(4): 1221-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20865290

ABSTRACT

Carnosine is found in high concentrations in skeletal muscles, where it is involved in several physiological functions. The muscle carnosine content measured within a population can vary by a factor 4. The aim of this study was to further characterize suggested determinants of the muscle carnosine content (diet, gender and age) and to identify new determinants (plasma carnosinase activity and testosterone). We investigated a group of 149 healthy subjects, which consisted of 94 men (12 vegetarians) and 55 women. Muscle carnosine was quantified in M. soleus, gastrocnemius and tibialis anterior using magnetic resonance proton spectroscopy and blood samples were collected to determine CNDP1 genotype, plasma carnosinase activity and testosterone concentrations. Compared to women, men have 36, 28 and 82% higher carnosine concentrations in M. soleus, gastrocnemius and tibialis anterior muscle, respectively, whereas circulating testosterone concentrations were unrelated to muscle carnosine levels in healthy men. The carnosine content of the M. soleus is negatively related to the subjects' age. Vegetarians have a lower carnosine content of 26% in gastrocnemius compared to omnivores. In contrast, there is no difference in muscle carnosine content between omnivores with a high or low ingestion of ß-alanine. Muscle carnosine levels are not related to the polymorphism of the CNDP1 gene or to the enzymatic activity of the plasma carnosinase. In conclusion, neither CNDP1 genotype nor the normal variation in circulating testosterone levels affects the muscular carnosine content, whereas vegetarianism, female gender and increasing age are the factors associated with reduced muscle carnosine stores.


Subject(s)
Carnosine/blood , Dipeptidases , Muscles/chemistry , Adolescent , Adult , Age Factors , Diet , Diet, Vegetarian/adverse effects , Dietary Supplements , Dipeptidases/blood , Dipeptidases/genetics , Female , Gene Expression , Genotype , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Genetic , Sex Factors , Testosterone/blood , Young Adult , beta-Alanine/analysis
11.
J Appl Physiol (1985) ; 109(4): 1096-101, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20671038

ABSTRACT

The role of the presence of carnosine (ß-alanyl-L-histidine) in millimolar concentrations in human skeletal muscle is poorly understood. Chronic oral ß-alanine supplementation is shown to elevate muscle carnosine content and improve anaerobic exercise performance during some laboratory tests, mainly in the untrained. It remains to be determined whether carnosine loading can improve single competition-like events in elite athletes. The aims of the present study were to investigate if performance is related to the muscle carnosine content and if ß-alanine supplementation improves performance in highly trained rowers. Eighteen Belgian elite rowers were supplemented for 7 wk with either placebo or ß-alanine (5 g/day). Before and following supplementation, muscle carnosine content in soleus and gastrocnemius medialis was measured by proton magnetic resonance spectroscopy ((1)H-MRS) and the performance was evaluated in a 2,000-m ergometer test. At baseline, there was a strong positive correlation between 100-, 500-, 2,000-, and 6,000-m speed and muscle carnosine content. After ß-alanine supplementation, the carnosine content increased by 45.3% in soleus and 28.2% in gastrocnemius. Following supplementation, the ß-alanine group was 4.3 s faster than the placebo group, whereas before supplementation they were 0.3 s slower (P = 0.07). Muscle carnosine elevation was positively correlated to 2,000-m performance enhancement (P = 0.042 and r = 0.498). It can be concluded that the positive correlation between baseline muscle carnosine levels and rowing performance and the positive correlation between changes in muscle carnosine and performance improvement suggest that muscle carnosine is a new determinant of rowing performance.


Subject(s)
Carnosine/metabolism , Dietary Supplements , Exercise , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Performance-Enhancing Substances/administration & dosage , beta-Alanine/administration & dosage , Administration, Oral , Adult , Analysis of Variance , Cross-Sectional Studies , Double-Blind Method , Female , Humans , Lactic Acid/blood , Magnetic Resonance Spectroscopy , Male , Muscle, Skeletal/metabolism , Performance-Enhancing Substances/metabolism , Time Factors , Up-Regulation , Young Adult , beta-Alanine/metabolism
12.
Sports Med ; 40(3): 247-63, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20199122

ABSTRACT

Carnosine is a dipeptide with a high concentration in mammalian skeletal muscle. It is synthesized by carnosine synthase from the amino acids L-histidine and beta-alanine, of which the latter is the rate-limiting precursor, and degraded by carnosinase. Recent studies have shown that the chronic oral ingestion of beta-alanine can substantially elevate (up to 80%) the carnosine content of human skeletal muscle. Interestingly, muscle carnosine loading leads to improved performance in high-intensity exercise in both untrained and trained individuals. Although carnosine is not involved in the classic adenosine triphosphate-generating metabolic pathways, this suggests an important role of the dipeptide in the homeostasis of contracting muscle cells, especially during high rates of anaerobic energy delivery. Carnosine may attenuate acidosis by acting as a pH buffer, but improved contractile performance may also be obtained by improved excitation-contraction coupling and defence against reactive oxygen species. High carnosine concentrations are found in individuals with a high proportion of fast-twitch fibres, because these fibres are enriched with the dipeptide. Muscle carnosine content is lower in women, declines with age and is probably lower in vegetarians, whose diets are deprived of beta-alanine. Sprint-trained athletes display markedly high muscular carnosine, but the acute effect of several weeks of training on muscle carnosine is limited. High carnosine levels in elite sprinters are therefore either an important genetically determined talent selection criterion or a result of slow adaptation to years of training. beta-Alanine is rapidly developing as a popular ergogenic nutritional supplement for athletes worldwide, and the currently available scientific literature suggests that its use is evidence based. However, many aspects of the supplement, such as the potential side effects and the mechanism of action, require additional and thorough investigation by the sports science community.


Subject(s)
Carnosine/metabolism , Dietary Supplements , Exercise , Motor Activity , Muscle, Skeletal/metabolism , beta-Alanine/administration & dosage , Age Factors , Animals , Antioxidants , Doping in Sports , Exercise Tolerance , Humans , Muscle, Skeletal/drug effects , Nutritional Status , Oxidative Stress , Sex Factors
13.
Eur J Appl Physiol ; 108(3): 495-503, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19841932

ABSTRACT

The oral ingestion of beta-alanine, the rate-limiting precursor in carnosine synthesis, has been shown to elevate the muscle carnosine content. Carnosine is thought to act as a physiologically relevant pH buffer during exercise but direct evidence is lacking. Acidosis has been hypothesised to influence oxygen uptake kinetics during high-intensity exercise. The present study aimed to investigate whether oral beta-alanine supplementation could reduce acidosis during high-intensity cycling and thereby affect oxygen uptake kinetics. 14 male physical education students participated in this placebo-controlled, double-blind study. Subjects were supplemented orally for 4 weeks with 4.8 g/day placebo or beta-alanine. Before and after supplementation, subjects performed a 6-min cycling exercise bout at an intensity of 50% of the difference between ventilatory threshold (VT) and VO(2peak). Capillary blood samples were taken for determination of pH, lactate, bicarbonate and base excess, and pulmonary oxygen uptake kinetics were determined with a bi-exponential model fitted to the averaged breath-by-breath data of three repetitions. Exercise-induced acidosis was significantly reduced following beta-alanine supplementation compared to placebo, without affecting blood lactate and bicarbonate concentrations. The time delay of the fast component (Td(1)) of the oxygen uptake kinetics was significantly reduced following beta-alanine supplementation compared to placebo, although this did not reduce oxygen deficit. The parameters of the slow component did not differ between groups. These results indicate that chronic beta-alanine supplementation, which presumably increased muscle carnosine content, can attenuate the fall in blood pH during high-intensity exercise. This may contribute to the ergogenic effect of the supplement found in some exercise modes.


Subject(s)
Acidosis/prevention & control , Exercise/physiology , Oxygen Consumption/drug effects , beta-Alanine/pharmacology , Acidosis/metabolism , Acidosis/physiopathology , Adult , Blood Gas Analysis , Dietary Supplements , Dose-Response Relationship, Drug , Double-Blind Method , Exercise Test , Humans , Male , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Pulmonary Gas Exchange/physiology , Time Factors , beta-Alanine/administration & dosage
14.
J Appl Physiol (1985) ; 106(3): 837-42, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19131472

ABSTRACT

Carnosine (beta-alanyl-L-histidine) is present in high concentrations in human skeletal muscles. The oral ingestion of beta-alanine, the rate-limiting precursor in carnosine synthesis, has been shown to elevate the muscle carnosine content both in trained and untrained humans. Little human data exist about the dynamics of the muscle carnosine content, its metabolic regulation, and its dependence on muscle fiber type. The present study aimed to investigate in three skeletal muscle types the supplementation-induced amplitude of carnosine synthesis and its subsequent elimination on cessation of supplementation (washout). Fifteen untrained males participated in a placebo-controlled double-blind study. They were supplemented for 5-6 wk with either 4.8 g/day beta-alanine or placebo. Muscle carnosine was quantified in soleus, tibialis anterior, and medial head of the gastrocnemius by proton magnetic resonance spectroscopy (MRS), before and after supplementation and 3 and 9 wk into washout. The beta-alanine supplementation significantly increased the carnosine content in soleus by 39%, in tibialis by 27%, and in gastrocnemius by 23% and declined post-supplementation at a rate of 2-4%/wk. Average muscle carnosine remained increased compared with baseline at 3 wk of washout (only one-third of the supplementation-induced increase had disappeared) and returned to baseline values within 9 wk at group level. Following subdivision into high responders (+55%) and low responders (+15%), washout period was 15 and 6 wk, respectively. In the placebo group, carnosine remained relatively constant with variation coefficients of 9-15% over a 3-mo period. It can be concluded that carnosine is a stable compound in human skeletal muscle, confirming the absence of carnosinase in myocytes. The present study shows that washout periods for crossover designs in supplementation studies for muscle metabolites may sometimes require months rather than weeks.


Subject(s)
Carnosine/metabolism , Muscle, Skeletal/metabolism , beta-Alanine/pharmacokinetics , Humans , Magnetic Resonance Spectroscopy , Male , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...