Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 97: 102-111, 2023 04.
Article in English | MEDLINE | ID: mdl-36632946

ABSTRACT

Magnitude-based PDFF (Proton Density Fat Fraction) and R2∗ mapping with resolved water-fat ambiguity is extended to calculate field inhomogeneity (field map) using the phase images. The estimation is formulated in matrix form, resolving the field map in a least-squares sense. PDFF and R2∗ from magnitude fitting may be updated using the estimated field maps. The limits of quantification of our voxel-independent implementation were assessed. Bland-Altman was used to compare PDFF and field maps from our method against a reference complex-based method on 152 UK Biobank subjects (1.5 T Siemens). A separate acquisition (3 T Siemens) presenting field inhomogeneities was also used. The proposed field mapping was accurate beyond double the complex-based limit range. High agreement was obtained between the proposed method and the reference in UK. Robust field mapping was observed at 3 T, for inhomogeneities over 400 Hz including rapid variation across edges. Field mapping following unambiguous magnitude-based water-fat separation was demonstrated in-vivo and showed potential at 3 T.


Subject(s)
Magnetic Resonance Imaging , Water , Humans , Magnetic Resonance Imaging/methods , Protons , Liver , Reproducibility of Results
2.
Obesity (Silver Spring) ; 30(6): 1231-1238, 2022 06.
Article in English | MEDLINE | ID: mdl-35475573

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) is associated with significant end-organ damage and ectopic fat accumulation. Multiparametric magnetic resonance imaging (MRI) can provide a rapid, noninvasive assessment of multiorgan and body composition. The primary objective of this study was to investigate differences in visceral adiposity, ectopic fat accumulation, body composition, and relevant biomarkers between people with and without T2D. METHODS: Participant demographics, routine biochemistry, and multiparametric MRI scans of the liver, pancreas, visceral and subcutaneous adipose tissue, and skeletal muscle were analyzed from 266 participants (131 with T2D and 135 without T2D) who were matched for age, gender, and BMI. Wilcoxon and χ2 tests were performed to calculate differences between groups. RESULTS: Participants with T2D had significantly elevated liver fat (7.4% vs. 5.3%, p = 0.011) and fibroinflammation (as assessed by corrected T1 [cT1]; 730 milliseconds vs. 709 milliseconds, p = 0.019), despite there being no differences in liver biochemistry, serum aspartate aminotransferase (p = 0.35), or alanine transaminase concentration (p = 0.11). Significantly lower measures of skeletal muscle index (45.2 cm2 /m2 vs. 50.6 cm2 /m2 , p = 0.003) and high-density lipoprotein cholesterol (1.1 mmol/L vs. 1.3 mmol/L, p < 0.0001) were observed in participants with T2D. CONCLUSIONS: Multiparametric MRI revealed significantly elevated liver fat and fibroinflammation in participants with T2D, despite normal liver biochemistry. This study corroborates findings of significantly lower measures of skeletal muscle and high-density lipoprotein cholesterol in participants with T2D versus those without T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Cholesterol , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Humans , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/pathology , Lipoproteins, HDL , Liver/diagnostic imaging , Liver/pathology , Muscle, Skeletal/diagnostic imaging
3.
J Magn Reson Imaging ; 56(4): 997-1008, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35128748

ABSTRACT

BACKGROUND: Quantitative imaging studies of the pancreas have often targeted the three main anatomical segments, head, body, and tail, using manual region of interest strategies to assess geographic heterogeneity. Existing automated analyses have implemented whole-organ segmentation, providing overall quantification but failing to address spatial heterogeneity. PURPOSE: To develop and validate an automated method for pancreas segmentation into head, body, and tail subregions in abdominal MRI. STUDY TYPE: Retrospective. SUBJECTS: One hundred and fifty nominally healthy subjects from UK Biobank (100 subjects for method development and 50 subjects for validation). A separate 390 UK Biobank triples of subjects including type 2 diabetes mellitus (T2DM) subjects and matched nondiabetics. FIELD STRENGTH/SEQUENCE: A 1.5 T, three-dimensional two-point Dixon sequence (for segmentation and volume assessment) and a two-dimensional axial multiecho gradient-recalled echo sequence. ASSESSMENT: Pancreas segments were annotated by four raters on the validation cohort. Intrarater agreement and interrater agreement were reported using Dice overlap (Dice similarity coefficient [DSC]). A segmentation method based on template registration was developed and evaluated against annotations. Results on regional pancreatic fat assessment are also presented, by intersecting the three-dimensional parts segmentation with one available proton density fat fraction (PDFF) image. STATISTICAL TEST: Wilcoxon signed rank test and Mann-Whitney U-test for comparisons. DSC and volume differences for evaluation. A P value < 0.05 was considered statistically significant. RESULTS: Good intrarater (DSC mean, head: 0.982, body: 0.940, tail: 0.961) agreement and interrater (DSC mean, head: 0.968, body: 0.905, tail: 0.943) agreement were observed. No differences (DSC, head: P = 0.4358, body: P = 0.0992, tail: P = 0.1080) were observed between the manual annotations and our method's segmentations (DSC mean, head: 0.965, body: 0.893, tail: 0.934). Pancreatic body PDFF was different between T2DM and nondiabetics matched by body mass index. DATA CONCLUSION: The developed segmentation's performance was no different from manual annotations. Application on type 2 diabetes subjects showed potential for assessing pancreatic disease heterogeneity. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Subject(s)
Diabetes Mellitus, Type 2 , Adipose Tissue/diagnostic imaging , Diabetes Mellitus, Type 2/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pancreas/diagnostic imaging , Protons , Retrospective Studies
4.
Magn Reson Med ; 82(1): 460-475, 2019 07.
Article in English | MEDLINE | ID: mdl-30874334

ABSTRACT

PURPOSE: To develop a postprocessing algorithm for multiecho chemical-shift encoded water-fat separation that estimates proton density fat fraction (PDFF) maps over the full dynamic range (0-100%) using multipeak fat modeling and multipoint search optimization. To assess its accuracy, reproducibility, and agreement with state-of-the-art complex-based methods, and to evaluate its robustness to artefacts in abdominal PDFF maps. METHODS: We introduce MAGO (MAGnitude-Only), a magnitude-based reconstruction that embodies multipeak liver fat spectral modeling and multipoint optimization, and which is compatible with asymmetric echo acquisitions. MAGO is assessed first for accuracy and reproducibility on publicly available phantom data. Then, MAGO is applied to N = 178 UK Biobank cases, in which its liver PDFF measures are compared using Bland-Altman analysis with those from a version of the hybrid iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) algorithm, LiverMultiScan IDEAL (LMS IDEAL, Perspectum Diagnostics Ltd, Oxford, UK). Finally, MAGO is tested on a succession of high field challenging cases for which LMS IDEAL generated artefacts in the PDFF maps. RESULTS: Phantom data showed accurate, reproducible MAGO PDFF values across manufacturers, field strengths, and acquisition protocols. Moreover, we report excellent agreement between MAGO and LMS IDEAL for 6-echo, 1.5 tesla human acquisitions (bias = -0.02% PDFF, 95% confidence interval = ±0.13% PDFF). When tested on 12-echo, 3 tesla cases from different manufacturers, MAGO was shown to be more robust to artefacts compared to LMS IDEAL. CONCLUSION: MAGO resolves the water-fat ambiguity over the entire fat fraction dynamic range without compromising accuracy, therefore enabling robust PDFF estimation where phase data is inaccessible or unreliable and complex-based and hybrid methods fail.


Subject(s)
Adipose Tissue/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Artifacts , Body Water/diagnostic imaging , Humans , Liver/diagnostic imaging , Liver Diseases/diagnostic imaging , Phantoms, Imaging
5.
PLoS One ; 13(9): e0204175, 2018.
Article in English | MEDLINE | ID: mdl-30235288

ABSTRACT

PURPOSE: Several studies have demonstrated the accuracy, precision, and reproducibility of proton density fat fraction (PDFF) quantification using vendor-specific image acquisition protocols and PDFF estimation methods. The purpose of this work is to validate a confounder-corrected, cross-vendor, cross field-strength, in-house variant LMS IDEAL of the IDEAL method licensed from the University of Wisconsin, which has been developed for routine clinical use. METHODS: LMS IDEAL is implemented using a combination of patented and/or published acquisition and some novel model fitting methods required to correct confounds which result from the imaging and estimation processes, including: water-fat ambiguity; T2* relaxation; multi-peak fat modelling; main field inhomogeneity; T1 and noise bias; bipolar readout gradients; and eddy currents. LMS IDEAL has been designed to use image acquisition protocols that can be installed on most MRI scanners and cloud-based image processing to provide fast, standardized clinical results. Publicly available phantom data were used to validate LMS IDEAL PDFF calculations against results from originally published IDEAL methodology. LMS PDFF and T2* measurements were also compared with an independent technique in human volunteer data (n = 179) acquired as part of the UK Biobank study. RESULTS: We demonstrate excellent agreement of LMS IDEAL across vendors, field strengths, and over a wide range of PDFF and T2* values in the phantom study. The performance of LMS IDEAL was then assessed in vivo against widely accepted PDFF and T2* estimation methods (LMS Dixon and LMS T2*, respectively), demonstrating the robustness of LMS IDEAL to potential sources of error. CONCLUSION: The development and clinical validation of the LMS IDEAL algorithm as a chemical shift-encoded MRI method for PDFF and T2* estimation contributes towards robust, unbiased applications for quantification of hepatic steatosis and iron overload, which are key features of chronic liver disease.


Subject(s)
Adiposity , Liver/anatomy & histology , Magnetic Resonance Imaging/standards , Cohort Studies , Humans , Phantoms, Imaging , Protons , Reference Standards , Reproducibility of Results , Tissue Banks , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...