Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1104490, 2023.
Article in English | MEDLINE | ID: mdl-37200920

ABSTRACT

Rhizosphere is the battlefield of beneficial and harmful (so called phytopathogens) microorganisms. Moreover, these microbial communities are struggling for their existence in the soil and playing key roles in plant growth, mineralization, nutrient cycling and ecosystem functioning. In the last few decades, some consistent pattern have been detected so far that link soil community composition and functions with plant growth and development; however, it has not been studied in detail. AM fungi are model organisms, besides potential role in nutrient cycling; they modulate biochemical pathways directly or indirectly which lead to better plant growth under biotic and abiotic stress conditions. In the present investigations, we have elucidated the AM fungi-mediated activation of plant defense responses against Meloidogyne graminicola causing root-knot disease in direct seeded rice (Oryza sativa L.). The study describes the multifarious effects of Funneliformis mosseae, Rhizophagus fasciculatus, and Rhizophagus intraradices inoculated individually or in combination under glasshouse conditions in rice plants. It was found that F. mosseae, R. fasciculatus and R. intraradices when applied individually or in combination modulated the biochemical and molecular mechanisms in the susceptible and resistant inbred lines of rice. AM inoculation significantly increased various plant growth attributes in plants with simultaneous decrease in the root-knot intensity. Among these, the combined application of F. mosseae, R. fasciculatus, and R. intraradices was found to enhance the accumulation and activities of biomolecules and enzymes related to defense priming as well as antioxidation in the susceptible and resistant inbred lines of rice pre-challenged with M. graminicola. The application of F. mosseae, R. fasciculatus and R. intraradices, induced the key genes involved in plant defense and signaling and it has been demonstrated for the first time. Results of the present investigation advocated that the application of F. mosseae, R. fasciculatus and R. intraradices, particularly a combination of all three, not only helped in the control of root-knot nematodes but also increased plant growth as well as enhances the gene expression in rice. Thus, it proved to be an excellent biocontrol as well as plant growth-promoting agent in rice even when the crop is under biotic stress of the root-knot nematode, M. graminicola.

2.
World J Microbiol Biotechnol ; 38(6): 97, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35478267

ABSTRACT

In the recent past, the mass production of arbuscular mycorrhizal (AM) fungi has bloomed into a large biofertilizer industry. Due to their obligate symbiotic nature, these fungi are propagated on living roots in substrate-based pot cultures and RiTDNA in in vitro or root organ culture systems. The quality assessment of AM inocula remains critical for the production and efficacy evaluation of AM fungi. The vigour of AM inocula are assessed through microscopic methods such as inoculum potential, infectivity potential/infection units, most probable number (MPN) and spore density. These methods marginally depend on the researcher's skill. The signature lipids specific to AM fungi, e.g. 16:1ω5cis ester-linked, phospholipid, and neutral lipid fatty acids provide more robustness and reproducibility. The quantitative real-time PCR of AM fungal taxa specific primers and probes analyzing gene copy number is also increasingly used. This article intends to sensitize AM fungal researchers and inoculum manufacturers to various methods of assessing the quality of AM inocula addressing their merits and demerits. This will help AM producers to fulfil the regulatory requirements ensuring the supply of high-quality AM inocula to end-users, and tap a new dimension of AM research in the commercial production of AM fungi and its application in sustainable plant production systems.


Subject(s)
Mycorrhizae , Fertilizers , Mycorrhizae/genetics , Plants , Reproducibility of Results , Symbiosis
3.
J Appl Microbiol ; 128(6): 1583-1594, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31705597

ABSTRACT

The genus Bacillus is one of the predominant bacterial genera found in soil, and several species of this genus have been reported from diverse ecological niches. Endowed with tremendous genetic and metabolic diversity, Bacillus spp. serve multiple ecological functions in soil ecosystem from nutrient cycling to conferring stress tolerance to plants. Members of the genus Bacillus are known to have multiple beneficial traits which help the plants directly or indirectly through acquisition of nutrients, overall improvement in growth by production of phytohormones, protection from pathogens and other abiotic stressors. This functionally versatile genus is one of the most commercially exploited bacteria in the agro-biotechnology industry. Still its potential has not been realized sufficiently and requires an emphasis towards translating the relevant technologies from laboratory to land for the benefit of mankind.


Subject(s)
Bacillus/physiology , Plant Physiological Phenomena , Plants/microbiology , Soil Microbiology , Bacillus/metabolism , Biological Control Agents , Ecosystem , Nutrients/metabolism , Plant Development , Plant Growth Regulators/metabolism , Plants/metabolism , Stress, Physiological
4.
Microbiol Res ; 163(6): 693-700, 2008.
Article in English | MEDLINE | ID: mdl-17324563

ABSTRACT

A glass house experiment was conducted to study the interaction between the mycorrhizal fungus, Glomus mosseae and six soil yeasts (Rhodotorula mucilaginosa, Metschnikowia pulcherrima, Trichosporon cutaneum var. cutaneum, Saccharomyces cerevisiae, Cryptococcus laurentii, Debaryomyces occidentalis var. occidentalis), and their effect on growth and nutrition of cowpea. All the yeasts had a synergistic interaction with the mycorrhizal fungus and dual inoculation improved plant growth compared to single inoculation with G. mosseae alone. Nitrogen and phosphorus uptake of plants was also enhanced significantly in G. mosseae and soil yeasts combinations. Growth, N, P, chlorophyll and phenol content and yield of cowpea were highest in plants treated with G. mosseae+R. mucilaginosa. Mycorrhizal root colonization, spore numbers and population of yeasts in the root zone soil were also highest in the treatment G. mosseae+R. mucilaginosa and least in the uninoculated plants.


Subject(s)
Fabaceae/growth & development , Glomeromycota/growth & development , Mycorrhizae/growth & development , Soil Microbiology , Yeasts/growth & development , Chlorophyll/metabolism , Fabaceae/metabolism , Fabaceae/microbiology , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Spores, Fungal/physiology , Yeasts/classification , Yeasts/metabolism
5.
Indian J Exp Biol ; 42(11): 1132-5, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15587122

ABSTRACT

Seven isolates of vesicular arbuscular mycorrhizal (VAM) fungi were isolated from cashew rhizosphere soil of different cashew growing regions of South India. These seven isolates along with two more VAM fungi namely Acaulospora laevis and Glomus mosseae, which were found to be better symbionts for cashew during our earlier study were used to study their effectiveness on the growth and nutrition of cashew rootstock Ullal-1. Four promising VAM fungi were selected based on this study. Rootstocks inoculated with these four fungi were evaluated for their vigour through grafting success, using Ullal-3 cashew variety as scion. Grafting success was more in rootstocks inoculated with A. laevis and one of local isolates Glomus etunicatum. Grafts with rootstock treated with G. etunicatum and A. laevis survived and performed better when planted in the field compared to the uninoculated and other VAM fungal treatments.


Subject(s)
Anacardium/growth & development , Fungi/physiology , Plant Roots/growth & development , Transplants , Anacardium/microbiology , Plant Roots/microbiology , Symbiosis
6.
Mycorrhiza ; 12(6): 313-6, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12466919

ABSTRACT

The effects of soil inoculation with arbuscular mycorrhizal (AM) fungi and a mycorrhiza helper bacterium (MHB) were investigated on mulberry and papaya plants already established in the field. Ten-year-old mulberry plants (var. M5) were inoculated with Glomus fasciculatum and 1.5-year-old papaya plants (var. Solo) were inoculated with a mixed culture of G. mosseae and G. caledonium with or without Bacillus coagulans at two levels of P fertilizer. Growth, P uptake, yield and AM colonization levels were monitored. Leaf yield in mulberry and fruit yield in papaya were minimal in uninoculated plants given 50% recommended P. However, crop yields of both mulberry and papaya inoculated with AM fungi alone or together with the bacterium and given 50% recommended P were statistically on a par with that of uninoculated plants given 100% recommended P. As inoculation of B. coagulans increased mycorrhiza levels in AM fungal-inoculated plants, this may be included in the class of MHB. Thus, mulberry and papaya already established in the field may respond to AM inoculation and MHB may increase symbiosis development by efficient AM fungi.


Subject(s)
Bacillus/physiology , Carica/microbiology , Fungi/physiology , Morus/microbiology , Mycorrhizae/physiology , Symbiosis/physiology , Carica/growth & development , Morus/growth & development , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Soil Microbiology
7.
Indian J Exp Biol ; 38(11): 1147-51, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11395961

ABSTRACT

Hairy root culture of tomato (Lycopersicon esculantum L.) was induced with three strains of Agrobacterium rhizogenes namely A4, ATCC 15834 and LBA 9402. The best response in terms of growth of hairy root was observed with A. rhizogenes strain A4 and LBA 9402 followed by ATCC 15834. Hairy roots were maintained on Murashige and Skoog (MS) medium but it could also grow on minimal (M) medium. Spores of Gigaspora margarita were isolated by wet sieving and decanting method and further recovered by sucrose density gradient method. A new method for surface sterilization of spores has been described which is simpler than the methods described earlier. Surface sterilized spores of G. margarita were used for inoculation of transformed roots grown on M medium as it was found more favourable for germination and growth of spores. During co-cultivation, mycorrhizal spore germination and its penetration into root cortex were observed. Inter and intracellular mycelial spread and formation of arbuscules were also observed in the cortical region of transformed roots of this plant.


Subject(s)
DNA, Bacterial/metabolism , Fungi/growth & development , Solanum lycopersicum/microbiology , Culture Media , Fungi/physiology , Plant Roots/microbiology , Spores, Fungal
8.
World J Microbiol Biotechnol ; 10(4): 381-4, 1994 Jul.
Article in English | MEDLINE | ID: mdl-24421080

ABSTRACT

Grain yields of the rice cultivar 'Prakash' were improved upon inoculation with Glomus intraradices and G. fasciculatum, by 11% and 8%, respectively, compared with an uninoculated control. The results indicate that the amount of phosphate fertilizer usually applied to rice may be decreased by 50%, without affecting yield, if G. intraradices is inoculated.

9.
World J Microbiol Biotechnol ; 9(3): 342-4, 1993 May.
Article in English | MEDLINE | ID: mdl-24420039

ABSTRACT

Lower amounts of root eduxates (13 mg/g dry root) emerged from leucaena plants inoculated with the mycorrhizal fungus, Glomus fasciculatum, than uninoculated plants (21 mg/g dry root). Mycorrhizal plants exuded less K(+), Pi and sugars (mainly glucose) but more protein, nitrogen, phenolics and gibberellins than uninoculated plants. Glycine, alanine, cysteine, arginine, tryptophan and valine occurred only in the root exudates of the former. Uninoculated plants exuded more of a root-elongation inhibitory substance than the uninoculated ones.

10.
World J Microbiol Biotechnol ; 6(1): 59-63, 1990 Mar.
Article in English | MEDLINE | ID: mdl-24429891

ABSTRACT

Efficient vesicular arbuscular mycorrhizal (VAM) fungi were screened and selected for a slow-growing forest tree species,Tamarindus indica L., important in tropical forestry. Seedlings were inoculated with 13 different VAM fungi, obtained from various sources around the world. Inoculated plants had greater plant height, leaf number, stem girth, biomass, phosphate and Zn(2+) content. They also had higher amounts of mycorrhizal spores, per cent root colonization and external hyphae, as measured by per cent soil aggregation.Tamarindus indica seedlings responded best to inoculation withGigaspora margarita (ICRISAT) followed byGlomus fasciculatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...