Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 154: 116219, 2022 01.
Article in English | MEDLINE | ID: mdl-34571206

ABSTRACT

Hip fractures associated with a high economic burden, loss of independence, and a high rate of post-fracture mortality, are a major health concern for modern societies. Areal bone mineral density is the current clinical metric of choice when assessing an individual's future risk of fracture. However, this metric has been shown to lack sensitivity and specificity in the targeted selection of individuals for preventive interventions. Although femoral strength derived from computed tomography based finite element models has been proposed as an alternative based on its superior femoral strength prediction ex vivo, such predictions have only shown marginal or no improvement for assessing hip fracture risk. This study compares finite element derived femoral strength to aBMD as a metric for hip fracture risk assessment in subjects (N = 601) from the AGES Reykjavik Study cohort and analyses the dependence of femoral strength predictions and classification accuracy on the material model and femoral loading alignment. We found hip fracture classification based on finite element derived femoral strength to be significantly improved compared to aBMD. Finite element models with non-linear material models performed better at classifying hip fractures compared to finite element models with linear material models and loading alignments with low internal rotation and adduction, which do not correspond to weak femur alignments, were found to be most suitable for hip fracture classification.


Subject(s)
Hip Fractures , Pelvic Bones , Absorptiometry, Photon , Bone Density , Femur/diagnostic imaging , Finite Element Analysis , Hip Fractures/epidemiology , Humans
2.
J Mech Behav Biomed Mater ; 110: 103866, 2020 10.
Article in English | MEDLINE | ID: mdl-32957183

ABSTRACT

INTRODUCTION: Ultimate strength-density relationships for bone have been reported with widely varying results. Reliable bone strength predictions are crucial for many applications that aim to assess bone failure. Bone density and bone morphology have been proposed to explain most of the variance in measured bone strength. If this holds true, it could lead to the derivation of a single ultimate strength-density-morphology relationship for all anatomical sites. METHODS: All relevant literature was reviewed. Ultimate strength-density relationships derived from mechanical testing of human bone tissue were included. The reported relationships were translated to ultimate strength-apparent density relationships and normalized with respect to strain rate. Results were grouped based on bone tissue type (cancellous or cortical), anatomical site, and loading mode (tension vs. compression). When possible, the relationships were compared to existing ultimate strength-density-morphology relationships. RESULTS: Relationships that considered bone density and morphology covered the full spectrum of eight-fold inter-study difference in reported compressive ultimate strength-density relationships for trabecular bone. This was true for studies that tested specimens in different loading direction and tissue from different anatomical sites. Sparse data was found for ultimate strength-density relationships in tension and for cortical bone properties transverse to the main loading axis of the bone. CONCLUSIONS: Ultimate strength-density-morphology relationships could explain measured strength across anatomical sites and loading directions. We recommend testing of bone specimens in other directions than along the main trabecular alignment and to include bone morphology in studies that investigate bone material properties. The lack of tensile strength data did not allow for drawing conclusions on ultimate strength-density-morphology relationships. Further studies are needed. Ideally, these studies would investigate both tensile and compressive strength-density relationships, including morphology, to close this gap and lead to more accurate evaluation of bone failure.


Subject(s)
Bone Density , Bone and Bones , Compressive Strength , Humans , Stress, Mechanical , Tensile Strength
3.
Ann Biomed Eng ; 46(2): 270-283, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29181721

ABSTRACT

The limitations of areal bone mineral density measurements for identifying at-risk individuals have led to the development of alternative screening methods for hip fracture risk including the use of geometrical measurements from the proximal femur and subject specific finite element analysis (FEA) for predicting femoral strength, based on quantitative CT data (qCT). However, these methods need more development to gain widespread clinical applications. This study had three aims: To investigate whether proximal femur geometrical parameters correlate with obtained femur peak force during the impact testing; to examine whether or not failure of the proximal femur initiates in the cancellous (trabecular) bone; and finally, to examine whether or not surface fracture initiates in the places where holes perforate the cortex of the proximal femur. We found that cortical thickness around the trochanteric-fossa is significantly correlated to the peak force obtained from simulated sideways falling (R 2 = 0.69) more so than femoral neck cortical thickness (R 2 = 0.15). Dynamic macro level FE simulations predicted that fracture generally initiates in the cancellous bone compartments. Moreover, our micro level FEA results indicated that surface holes may be involved in primary failure events.


Subject(s)
Cancellous Bone , Femur Head , Hip Fractures , Models, Biological , Cancellous Bone/pathology , Cancellous Bone/physiopathology , Female , Femur Head/pathology , Femur Head/physiopathology , Finite Element Analysis , Hip Fractures/pathology , Hip Fractures/physiopathology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...