Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Air Qual Atmos Health ; 5(4): 401-412, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23205159

ABSTRACT

Fine particulate matter (PM(2.5)) is majorly formed by precursor gases, such as sulfur dioxide (SO(2)) and nitrogen oxides (NO(x)), which are emitted largely from intense industrial operations and transportation activities. PM(2.5) has been shown to affect respiratory health in humans. Evaluation of source regions and assessment of emission source contributions in the Gulf Coast region of the USA will be useful for the development of PM(2.5) regulatory and mitigation strategies. In the present study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the Weather Research & Forecasting (WRF) model is used to identify the emission source locations and transportation trends. Meteorological observations as well as PM(2.5) sulfate and nitric acid concentrations were collected at two sites during the Mississippi Coastal Atmospheric Dispersion Study, a summer 2009 field experiment along the Mississippi Gulf Coast. Meteorological fields during the campaign were simulated using WRF with three nested domains of 36, 12, and 4 km horizontal resolutions and 43 vertical levels and validated with North American Mesoscale Analysis. The HYSPLIT model was integrated with meteorological fields derived from the WRF model to identify the source locations using backward trajectory analysis. The backward trajectories for a 24-h period were plotted at 1-h intervals starting from two observation locations to identify probable sources. The back trajectories distinctly indicated the sources to be in the direction between south and west, thus to have origin from local Mississippi, neighboring Louisiana state, and Gulf of Mexico. Out of the eight power plants located within the radius of 300 km of the two monitoring sites examined as sources, only Watson, Cajun, and Morrow power plants fall in the path of the derived back trajectories. Forward dispersions patterns computed using HYSPLIT were plotted from each of these source locations using the hourly mean emission concentrations as computed from past annual emission strength data to assess extent of their contribution. An assessment of the relative contributions from the eight sources reveal that only Cajun and Morrow power plants contribute to the observations at the Wiggins Airport to a certain extent while none of the eight power plants contribute to the observations at Harrison Central High School. As these observations represent a moderate event with daily average values of 5-8 µg m(-3) for sulfate and 1-3 µg m(-3) for HNO(3) with differences between the two spatially varied sites, the local sources may also be significant contributors for the observed values of PM(2.5).

2.
Int J Environ Res Public Health ; 8(6): 2470-2490, 2011 06.
Article in English | MEDLINE | ID: mdl-21776240

ABSTRACT

In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting-Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.


Subject(s)
Air Pollution/analysis , Cities , Models, Theoretical , Mississippi , Ozone/analysis
3.
Int J Environ Res Public Health ; 6(3): 1055-74, 2009 03.
Article in English | MEDLINE | ID: mdl-19440433

ABSTRACT

Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1-3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO(2) concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented.


Subject(s)
Air Movements , Air Pollution , Computer Simulation , Models, Theoretical , Mississippi
SELECTION OF CITATIONS
SEARCH DETAIL
...