Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(4): 1568-1576, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30612432

ABSTRACT

Piling up excited states to reach upconversion (UC) is severely restricted by vibrational quenching mechanisms, especially when one looks at discrete molecular entities in solution. By carefully controlling the supramolecular assembly processes resulting from the strong electrostatic interactions between negatively charged Yb complexes and Tb3+ cations in aqueous solutions, we engineered the formation of heteropolynuclear complexes of [(YbL)2Tb x] compositions ( x = 1 and 2). These edifices display a phenomenon of cooperative photosensitization UC with green emission of the Tb cations upon NIR excitation at 980 nm in the Yb absorption band. The photophysical properties of the complexes were carefully investigated by steady-state and time-resolved luminescence experiments in D2O, allowing one to quantify the impact of the composition and pD of the solution on the emission intensity as well as clarifying the exact cooperative photosensitization upconversion mechanism. Using optimized conditions, the energy transfer UC process could be observed for the first time in nondeuterated water with discrete molecular compounds.

2.
Inorg Chem ; 57(10): 6095-6106, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29746120

ABSTRACT

A series of polynuclear assemblies based on ligand L (1,4,7-tris[hydrogen (6-methylpyridin-2-yl)phosphonate]-1,4,7-triazacyclononane) has been developed. The coordination properties of ligand L with LnIII (Ln = La, Eu, Tb, Yb, Lu) have been studied in water (pH = 7.0) and in D2O (pD = 7.0) by UV-absorption spectrometry, spectrofluorimetry, 1H and 31P NMR, DOSY, ESI-mass spectrometry, and X-ray diffraction. This nonadentate ligand forms highly stable mononuclear complexes in water and provides a very efficient shielding of the Ln cations, as emphasized by the very good luminescence properties of the Yb complex in D2O, especially regarding its lifetime (τD2O = 10.2 µs) and quantum yield (ϕD2O = 0.42%). In the presence of excess LnIII cation, polynuclar complexes of [(LnL)2Ln x] stoichiometry (x = 1 and x = 2) are observed in solution. In the solid state, a dinuclear complex of La could be isolated and structurally characterized by X-ray diffraction, unraveling the presence of strong hydrogen bonding interactions between a La(H2O)93+ cation and the [LaL]3- complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...