Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Tropical Biomedicine ; : 478-485, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011364

ABSTRACT

@#Hand, foot, and mouth disease (HFMD) is a contagious childhood disease caused by enteroviruses including enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6) and CV-A16 transmitted via direct and indirect contact. Different types of toy surfaces can affect the stability of viruses. Understanding the stability of enteroviruses on toys provides insightful data for effective disinfection in kindergartens or homes. Porous (ethylene-vinyl acetate mat foam, paper, pinewood, polyester fabric, and squishy polyurethane foam) and non-porous (acrylonitrile butadiene styrene plastic and stainless-steel coin) surfaces were inoculated with EV-A71 at 4, 24, and 35°C, and coxsackieviruses at 24°C. Infectious enteroviruses were recovered and titred in median tissue culture infectious dose assay (TCID50). Atomic force microscopy (AFM) images were taken from surfaces to examine association of surface roughness with virus stability. Overall, infectious enteroviruses were persistent on all non-porous and porous surfaces. Virus persistence was longest at 4°C followed by 24°C and 35°C. EV-A71 half-lives ranged between 6.4-12.8 hours at 4°C, 2.4-6.7 hours at 24°C, and 0.13-2.7 hours at 35°C. At lower virus titres exposed to 24°C, half-lives of enteroviruses ranged from 0.1-1.4 hours. Surface roughness values from AFM suggested smooth surfaces of non-porous surfaces were associated with better virus stability. Temperature, enterovirus concentration, and type of surface affected persistence and stability of enteroviruses. Our findings suggest both porous and non-porous surfaces in kindergartens allow enterovirus persistence and should be frequently disinfected to curb HFMD outbreaks in kindergartens.

2.
Trop Biomed ; 40(4): 478-485, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38308836

ABSTRACT

Hand, foot, and mouth disease (HFMD) is a contagious childhood disease caused by enteroviruses including enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6) and CV-A16 transmitted via direct and indirect contact. Different types of toy surfaces can affect the stability of viruses. Understanding the stability of enteroviruses on toys provides insightful data for effective disinfection in kindergartens or homes. Porous (ethylene-vinyl acetate mat foam, paper, pinewood, polyester fabric, and squishy polyurethane foam) and non-porous (acrylonitrile butadiene styrene plastic and stainless-steel coin) surfaces were inoculated with EV-A71 at 4, 24, and 35°C, and coxsackieviruses at 24°C. Infectious enteroviruses were recovered and titred in median tissue culture infectious dose assay (TCID50). Atomic force microscopy (AFM) images were taken from surfaces to examine association of surface roughness with virus stability. Overall, infectious enteroviruses were persistent on all non-porous and porous surfaces. Virus persistence was longest at 4°C followed by 24°C and 35°C. EV-A71 half-lives ranged between 6.4-12.8 hours at 4°C, 2.4-6.7 hours at 24°C, and 0.13-2.7 hours at 35°C. At lower virus titres exposed to 24°C, half-lives of enteroviruses ranged from 0.1-1.4 hours. Surface roughness values from AFM suggested smooth surfaces of non-porous surfaces were associated with better virus stability. Temperature, enterovirus concentration, and type of surface affected persistence and stability of enteroviruses. Our findings suggest both porous and non-porous surfaces in kindergartens allow enterovirus persistence and should be frequently disinfected to curb HFMD outbreaks in kindergartens.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Humans , Child , Hand, Foot and Mouth Disease/epidemiology , Enterovirus Infections/epidemiology , Disease Outbreaks , China/epidemiology
3.
Int Endod J ; 50(5): 427-436, 2017 May.
Article in English | MEDLINE | ID: mdl-27063356

ABSTRACT

AIM: To compare the accuracy of film and digital periapical radiography (PR) in detecting apical periodontitis (AP) using histopathological findings as a reference standard. METHODOLOGY: Jaw sections containing 67 teeth (86 roots) were collected from nine fresh, unclaimed bodies that were due for cremation. Imaging was carried out to detect AP lesions using film and digital PR with a centred view (FP and DP groups); film and digital PR combining central with 10˚ mesially and distally angled (parallax) views (FPS and DPS groups). All specimens underwent histopathological examination to confirm the diagnosis of AP. Sensitivity, specificity and predictive values of PR were analysed using rater mean (n = 5). Receiver operating characteristics (ROC) analysis was carried out. RESULTS: Sensitivity was 0.16, 0.37, 0.27 and 0.38 for FP, FPS, DP and DPS, respectively. Both FP and FPS had specificity and positive predictive values of 1.0, whilst DP and DPS had specificity and positive predictive values of 0.99. Negative predictive value was 0.36, 0.43, 0.39 and 0.44 for FP, FPS, DP and DPS, respectively. Area under the curve (AUC) for the various imaging methods was 0.562 (FP), 0.629 (DP), 0.685 (FPS), 0.6880 (DPS). CONCLUSIONS: The diagnostic accuracy of single digital periapical radiography was significantly better than single film periapical radiography. The inclusion of two additional horizontal (parallax) angulated periapical radiograph images (mesial and distal horizontal angulations) significantly improved detection of apical periodontitis.


Subject(s)
Periapical Periodontitis/diagnostic imaging , Radiography, Dental, Digital/methods , Radiography, Dental/methods , Cadaver , Humans , Malaysia , Periapical Periodontitis/pathology , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...