Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(28): 20410-20419, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932979

ABSTRACT

Taurine is now widely used as a new biomarker for cardiovascular and neurodegenerative diseases. This study discusses the importance of accurately determining taurine biomarker levels in various tissues and fluids for the early diagnosis of important pathologies and diseases. Current methods for taurine analysis face challenges such as low sensitivity, lack of selectivity, and complex procedures. Therefore, an efficient analytical method/technique is urgently needed by clinicians. A new paper-based photochemical method using triangular silver nanoparticles (TA-AgNPs) as optical nanoprobes was developed to detect taurine in human blood plasma and urine samples. This method involves a chemical reaction between taurine and TA-AgNPs, leading to a color change at pH 4.8, which is detected using a paper-based colorimetry (PCD) assay. The reaction is further confirmed by UV-visible spectrophotometry as the interaction between taurine and TA-AgNPs causes a significant change in the absorption spectrum, enabling the rapid and reliable measurement of this important biomarker with a detection limit of less than 0.2 µM to 20 mM. The method has been successfully applied to bioanalyzing taurine in human body fluids. Additionally, it requires optimized single-drop paper/parafilm-based colorimetric devices (OD-PCDs) for in situ and on-demand taurine analysis. This study represents the first use of TA-AgNPs for the specific and sensitive detection of taurine in real samples. The sensor design allows for the direct quantification of biomarkers in biological samples without the need for derivatization procedures or sample preparation. The simplicity and portability of OD-PCDs make them promising for tracking and monitoring. This method is expected to contribute to improving environmental health and occupational safety and represents a significant advancement in colorimetric analysis for the sensitive and selective detection of taurine, potentially providing a platform for the identification of taurine and other biomarkers.

2.
RSC Adv ; 14(22): 15755-15765, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38752162

ABSTRACT

Acetaldehyde, a prevalent carbonyl compound in fermented foods, poses challenges in various applications due to its reactivity. This study addresses the need for efficient acetaldehyde detection methods across biotechnological, environmental, pharmaceutical, and food sectors. Herein, we present a novel colorimetric/UV spectrophotometric approach utilizing gold nanoparticles (AuNPs), particularly gold nano-flowers (AuNFs), for sensitive acetaldehyde identification. The method exhibits a notable sensitivity, detecting acetaldehyde at concentrations as low as 0.1 µM. The mechanism involves the interaction of acetaldehyde molecules with AuNFs, leading to a significant change in the absorbance spectrum, which serves as the basis for detection. Moreover, its applicability extends to human biofluids, notably urine samples. Integration with a cost-effective one-drop microfluidic colorimetric device (OD-µPCD) enables the development of an affordable test strip (CATS). This semi-analytical device, employing a multichannel OD-µPCD, facilitates real-time analysis of acetaldehyde in human samples. Our findings demonstrate the pioneering utilization of AuNPs for selective and sensitive acetaldehyde detection, promising advancements in environmental and occupational safety standards, and laying a foundation for enhanced detection and monitoring of related volatile organic compounds (VOCs).

3.
RSC Adv ; 14(19): 13384-13412, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38660530

ABSTRACT

The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.

4.
RSC Adv ; 14(4): 2610-2620, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38226144

ABSTRACT

Dapoxetine (DPX) belongs to the selective serotonin reuptake inhibitor (SSRI) class and functions by blocking the serotonin transporter and increasing serotonin activity, thereby delaying ejaculation. Therefore, monitoring of the concentration of DPX in human biofluids is important for clinicians. In this study, application of silver nanoparticles with the morphology of prisms (AgNPrs) for the sensitive measurement of DPX using colorimetric chemosensing and the spectrophotometric method was investigated. Also, DPX was determined in real samples using the spectrophotometry method. Based on the obtained results, all of the detection process in colorimetric assay is related to morphological reform of AgNPrs after it's specific electrostatic and covalent interaction with DPX as analyte. The UV-vis results indicate that the proposed AgNPrs-based chemosensing system has a wide range of linearity (0.01 µM to 1 mM) with a low limit of quantification of 0.01 µM in human urine samples, which is suitable for clinical analysis of this drug in human urine samples. It is important to point out that, this chemosensing strategy showed inappropriate analytical results for the detection of DPX in human urine samples which is a novelty of this platform. Finally, the optimized microfluidic paper-based analytical device (µPAD) was integrated with the colorimetric analysis of DPX to provide a time/color system for estimating analyte concentration by a portable substrate toward in situ and on-site biomedical analysis. Interestingly, the analytical validation tests showed appropriate results with great stability, which may facilitate commercialization of the engineered substrate. For the first time, in order to provide a simple and portable colorimetric/spectrophotometric recognition system to sensitive determination of DPX, an optimized pump-less microfluidic paper-based colorimetric device (µPCD) was introduced and validated for the real-time biomedical analysis of this analyte. According to the obtained results, this alternative approach is suitable for therapeutic drug monitoring (TDM) and biomedical analysis by miniaturized and cost-beneficial devices.

5.
RSC Adv ; 13(43): 30499-30510, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37854491

ABSTRACT

Malondialdehyde (MDA) is a critical product of polyunsaturated adipose acid peroxidation and represents a common biomarker of oxidative stress. The effect of different MDA concentrations on human biofluids reflects pathological changes, which has been seen in diverse types of sickness, such as leukemia, diabetes, cancer, cardiovascular disease, and age-related macular degeneration and liver disease. In this study, different types of silver nanoparticles, including silver nanoprism (AgNPrs), silver nanowires (AgNWs), and silver nanospheres (AgNSs), were synthesized and used for the chemosensing of MDA by colorimetric and spectrophotometric methods. Colorimetric tests were performed to identify malondialdehyde in the solution as well as the one-droplet-based microfluidic paper substrate as a miniaturization device for the monitoring of analytes in human real samples. The analytical quantification of the MDA was done using the UV-Vis method. Also, the utilization of the designed chemosensor for the analysis of MDA in real sample was evaluated in human urine samples. Using the spectrophotometric method, MDA was deformed in the linear range of 0.01192 to 1.192 mM with a low limit of quantification of 0.12 µM. Essential significant features of this study include the first application of AgNPrs with high stability and great optical properties without any reagent as an optical sensing probe of MDA and optimized OD-µPCD toward on-site and on-demand MDA screening in real samples diagnosis and the innovative time/color semi-analytical recognition strategy. Moreover, the prepared OD-µPCD decorated by AgNPrs could be a prized candidate for commercialization due to the benefits of the low-cost materials used, like paper and paraffin, and portability. This innovative process led to uniform hydrophilic micro-channels on the surface of cellulose, without the use of a UV lamp, clean room, and organic solvents. This report could be a pioneering work, inspiring simple and effective on-site semi-analytical recognition devices for harmful substances or illegal drugs, which simply consist of a piece of lightweight paper and one drop of the required reagent.

6.
Biomimetics (Basel) ; 7(4)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36412703

ABSTRACT

Microfluidic technology is one of the new technologies that has been able to take advantage of the specific properties of micro and nanoliters, and by reducing the costs and duration of tests, it has been widely used in research and treatment in biology and medicine. Different materials are often processed into miniaturized chips containing channels and chambers within the microscale range. This review (containing 117 references) demonstrates the significance and application of nanofluidic biosensing of various pathogenic bacteria. The microfluidic application devices integrated with bioreceptors and advanced nanomaterials, including hyperbranched nano-polymers, carbon-based nanomaterials, hydrogels, and noble metal, was also investigated. In the present review, microfluid methods for the sensitive and selective recognition of photogenic bacteria in various biological matrices are surveyed. Further, the advantages and limitations of recognition methods on the performance and efficiency of microfluidic-based biosensing of photogenic bacteria are critically investigated. Finally, the future perspectives, research opportunities, potential, and prospects on the diagnosis of disease related to pathogenic bacteria based on microfluidic analysis of photogenic bacteria are provided.

7.
Heliyon ; 6(7): e04474, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32695920

ABSTRACT

Acinetobacter baumannii is the main cause of nosocomial infections in blood, urinary tract, wounds and in lungs leading to pneumonia. Apart from its strong predilection to be the cause of serious illnesses in intensive care units. Herein, we present a specific and sensitive approach for the monitoring of Acinetobacter baumannii genome based on citrate capped silver nanoparticles (Cit-AgNPs) using spectroscopic methods. In this study, (5' SH-TTG TGA ACT ATT TAC GTC AGC ATG C3') sequence was used as a probe DNA (pDNA) of Acinetobacter baumannii. Then, complementary DNA (cDNA) was used for hybridization. After the hybridization of pDNA with cDNA, target DNA (5' GCA TGC TGA CGT AAA TAGTTC ACA A 3') was recognized and detected using turn-on fluorescence bioassay. After the hybridization of pDNA with cDNA, the target DNA was successfully measured in optimum time of 2 min by spectrophotometric techniques. Moreover, the selectivity of designed bioassay was evaluated in the presence of two mismatch sequences and excellent differentiation was obtained. 1 Zepto-molar (zM) of low limit of quantification (LLOQ) was achieved by this genosensor. The present study paved the way for quick (2 min) and accurate detection of Acinetobacter baumannii, which can be a good alternative to the traditional methods. Current study proposed a novel and significant diagnostic test towards Acinetobacter baumannii detection based on silver nanoparticles aggregation which has the capability of being a good alternative to the traditional methods. Moreover, the proposed genosensor successfully could be applied for the detection of other pathogens.

8.
Enzyme Microb Technol ; 133: 109466, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31874682

ABSTRACT

Acinetobacter baumannii is a non-motile, gram-negative member of the gamma proteobacteria. A specific and sensitive approach was established for the detection of Acintobacter baumannii via DNA based bio-assay. In this study, gold nano-star was synthesized and used for bio-conjugation with pDNA toward the detection of target sequences. Synthesized probe (5' TTG TGA ACT ATT TAC GTC AGC ATG C3') of Acinetobacter baumannii was found with excellent sensitivity. After the hybridization of pDNA with cDNA, target DNA (5' GCA TGC TGA CGT AAA TAG TTC ACA A 3') was easily measured. According to ultra-sensitivity of the engineered optical DNA-based bio-assay, it is potentially applied in the bacterial detection of the environmental and clinical specimens. Here, the selection of engineered biosensor in the presence of two mismatch sequences was investigated. The results indicated an acceptable choice for DNA-based assays. The low limit of quantification (LLOQ) of genosensor was obtained as 1 fM. The present study is a very important diagnostic examination to recognize Acinetobacter baumannii, which can be a best alternative to the traditional methods.


Subject(s)
Acinetobacter baumannii/genetics , Biological Assay/methods , DNA, Bacterial/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...