Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1075662, 2022.
Article in English | MEDLINE | ID: mdl-36713362

ABSTRACT

Introduction: Bacillus anthracis is the causative agent for the lethal disease anthrax, primarily affecting animals and humans in close contact with an infected host. The pathogenicity of B. anthracis is attributed to the secreted exotoxins and their outer capsule. The host cell-binding exotoxin component "protective antigen" (PA) is reported to be a potent vaccine candidate. The aim of our study is to produce several PA constructs and analyze their vaccine potential. Methods: We have designed the various subunit, PA-based recombinant proteins, i.e., full-length Protective antigen (PA-FL), C-terminal 63 kDa fragment (PA63), Protective antigen domain 1-domain 4 chimeras (PA-D1-4) and protective antigen domain 4 (PA-D4) and analyzed their vaccine potential with different human-compatible adjuvants in the mouse model. We have optimized the process and successfully expressed our recombinant antigens as soluble proteins, except full-length PA. All the recombinant antigen formulations with three different adjuvants i.e., Addavax, Alhydrogel, and Montanide ISA 720, were immunized in different mouse groups. The vaccine efficacy of the formulations was analyzed by mouse serum antigen-specific antibody titer, toxin neutralization assay, and survival analysis of mouse groups challenged with a lethal dose of B. anthracis virulent spores. Results: We have demonstrated that the PA-FL addavax and PA63 addavax formulations were most effective in protecting spore-challenged mice and serum from the mice immunized with PAFL addavax, PA-FL alhydrogel, PA63 addavax, and PA63 alhydrogel formulations were equivalently efficient in neutralizing the anthrax lethal toxin. The higher levels of serum Th1, Th2, and Th17 cytokines in PA-FL addavax immunized mice correspond to the enhanced protection provided by the formulation in challenged mice. Discussion: We have demonstrated that the PA-FL addavax and PA63 addavax formulations exhibit equivalent efficiency as vaccine formulation both in a mouse model of anthrax and mammalian cell lines. However, PA63 is a smaller antigen than PA-FL and more importantly, PA63 is expressed as a soluble protein in E. coli, which imparts a translational advantage to PA63-based formulation. Thus, the outcome of our study has significant implications for the development of protective antigen-based vaccine formulations for human use against the lethal disease anthrax.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Animals , Mice , Humans , Anthrax/prevention & control , Aluminum Hydroxide , Escherichia coli , Adjuvants, Immunologic , Exotoxins , Mammals
2.
Sci Rep ; 11(1): 19183, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584166

ABSTRACT

Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.


Subject(s)
Antigens, Protozoan/metabolism , Antigens, Surface/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Animals , Antigens, Protozoan/genetics , Antigens, Surface/genetics , Disease Models, Animal , Erythrocytes/parasitology , Gene Knockout Techniques , Humans , Malaria Vaccines/therapeutic use , Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Merozoites/genetics , Merozoites/immunology , Merozoites/metabolism , Mice , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Rabbits , Vaccine Development
3.
J Infect Dis ; 223(11): 1953-1964, 2021 06 04.
Article in English | MEDLINE | ID: mdl-32989463

ABSTRACT

BACKGROUND: Targeting multiple key antigens that mediate distinct Plasmodium falciparum erythrocyte invasion pathways is an attractive approach for the development of blood-stage malaria vaccines. However, the challenge is to identify antigen cocktails that elicit potent strain-transcending parasite-neutralizing antibodies efficacious at low immunoglobulin G concentrations feasible to achieve through vaccination. Previous reports have screened inhibitory antibodies primarily against well adapted laboratory parasite clones. However, validation of the parasite-neutralizing efficacy against clinical isolates with minimal in vitro cultivation is equally significant to better ascertain their prospective in vivo potency. METHODS: We evaluated the parasite-neutralizing activity of different antibodies individually and in combinations against laboratory adapted clones and clinical isolates. Clinical isolates were collected from Central India and Mozambique, Africa, and characterized for their invasion properties and genetic diversity of invasion ligands. RESULTS: In our portfolio, we evaluated 25 triple antibody combinations and identified the MSP-Fu+CyRPA+RH5 antibody combination to elicit maximal parasite neutralization against P. falciparum clinical isolates with variable properties that underwent minimal in vitro cultivation. CONCLUSIONS: The MSP-Fu+CyRPA+RH5 combination exhibited highly robust parasite neutralization against P. falciparum clones and clinical isolates, thus substantiating them as promising candidate antigens and establishing a proof of principle for the development of a combinatorial P. falciparum blood-stage malaria vaccine.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines , Malaria, Falciparum , Antibodies, Protozoan , Erythrocytes/immunology , Humans , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Prospective Studies , Protozoan Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...