Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 30(4): e02089, 2020 06.
Article in English | MEDLINE | ID: mdl-32017294

ABSTRACT

Local community structure is shaped by processes acting at local and landscape scales. The relative importance of drivers operating across different spatial scales is difficult to test without observations across regional or latitudinal gradients. Cities exhibit strong but predictable environmental gradients overlaying a mosaic of highly variable but repeated habitat types within a constrained area. Thus, cities present a unique opportunity to explore how both local and landscape factors influence local biotic communities. We used insect communities to examine the interactions among local environmental variables (such as temperature and relative humidity), local habitat characteristics (such as plant community composition), and broad-scale patterns of urbanization (including biophysical, human-built, and socioeconomic variables) on local insect abundance, species richness, and species composition in Los Angeles, a hot, dry, near-desert city. After accounting for seasonal trends, insect species richness and abundance were highest in drier and hotter sites, but the magnitude of local environmental effects varied with the degree of urbanization. In contrast, insect species composition was best predicted by broad-scale urbanization trends, with the more native communities occurring in less urbanized sites and more cosmopolitan insects occurring in highly urbanized sites. However, insect species richness and abundance were >30% higher and insect composition was similar across sites that hosted either native or drought-tolerant plants, regardless of the degree of urbanization. These results demonstrate that urban insect biodiversity is a product of interacting mechanisms working at both local and landscape scales. However, local-scale changes to urban habitats, such as cultivating plants that are adapted to the natural environment nearest the city, can positively impact urban biodiversity regardless of location.


Subject(s)
Biodiversity , Insecta , Animals , Cities , Ecosystem , Humans , Urbanization
2.
Ecol Appl ; 25(7): 1807-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26591447

ABSTRACT

The spread and impact of invasive species may vary over time in relation to changes in the species itself, the biological community of which it is part, or external controls on the system. We investigate whether there have been changes in dynamic regimes over the last 20 years of two invasive species in the midwestern United States, the multicolored Asian lady beetle Harmonia axyridis and the soybean aphid Aphis glycines. We show by model selection that after its 1993 invasion into the American Midwest, the year-to-year population dynamics of H. axyridis were initially governed by a logistic rule supporting gradual rise to a stable carrying capacity. After invasion of the soybean aphid in 2000, food resources at the landscape level became abundant, supporting a higher year-to-year growth rate and a higher but unstable carrying capacity, with two-year cycles in both aphid and lady beetle abundance as a consequence. During 2005-2007, farmers in the Midwest progressively increased their use of insecticides for managing A. glycines, combining prophylactic seed treatment with curative spraying based on thresholds. This human intervention dramatically reduced the soybean aphid as a major food resource for H. axyridis at landscape level and corresponded to a reverse shift towards the original logistic rule for year-to-year dynamics. Thus, we document a short episode of major predator-prey fluctuations in an important agricultural system resulting from two biological invasions that were apparently damped by widespread insecticide use. Recent advances in development of plant resistance to A. glycines in soybeans may mitigate the need for pesticidal control and achieve the same stabilization of pest and predator populations at lower cost and environmental burden.


Subject(s)
Aphids/physiology , Coleoptera/physiology , Insecticides , Introduced Species , Animals , Aphids/drug effects , Coleoptera/drug effects , Midwestern United States , Population Dynamics , Time Factors
3.
PLoS One ; 9(12): e114230, 2014.
Article in English | MEDLINE | ID: mdl-25473951

ABSTRACT

Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.


Subject(s)
Aphids/pathogenicity , Ecosystem , Triticum/parasitology , Animals , Aphids/classification , Aphids/genetics , Crops, Agricultural/parasitology , Michigan , Pest Control, Biological , Triticum/genetics
4.
Pest Manag Sci ; 70(6): 879-88, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24214819

ABSTRACT

BACKGROUND: Recommended action thresholds for soybean aphid, Aphis glycines, do not adjust for natural enemy impact, although natural enemies contribute important biological control services. Because individual natural enemy species have varied impacts on pest population dynamics, incorporating the impact of a diverse predator guild into an action threshold can be cumbersome. RESULTS: Field surveys identified an aphidophagous natural enemy complex dominated by Orius insidiosus, Coccinella septempunctata, Harmonia axyridis and Aphelinus certus. Functional responses of O. insidiosus were determined in the laboratory, while predation rates of all other natural enemies were obtained from the literature. Natural enemy impacts were normalized using natural enemy units (NEUs), where 1 NEU = 100 aphids consumed or parasitized. A dynamic action threshold (DAT) was developed by combining NEUs with an A. glycines population growth model. With the DAT, an insecticide application was only triggered if natural enemy numbers were insufficient to suppress pest populations. In field experiments, DAT provided equivalent yields to the conventional action threshold and reduced the average number of pesticide applications. CONCLUSION: The DAT approach has the potential to reduce pesticide use, will help preserve natural enemy populations and can be applied to other pest systems with diverse natural enemy guilds.


Subject(s)
Aphids/parasitology , Insect Control/methods , Population Dynamics , Animals , Biological Control Agents , Canada , Coleoptera , Food Chain , Heteroptera , Insecticides , Predatory Behavior , Glycine max , Wasps
5.
PLoS One ; 8(12): e83407, 2013.
Article in English | MEDLINE | ID: mdl-24349505

ABSTRACT

Aphidophagous coccinellids (ladybeetles) are important providers of herbivore suppression ecosystem services. In the last 30 years, the invasion of exotic coccinellid species, coupled with observed declines in native species, has led to considerable interest in the community dynamics and ecosystem function of this guild. Here we examined a 24-year dataset of coccinellid communities in nine habitats in southwestern Michigan for changes in community function in response to invasion. Specifically we analyzed their temporal population dynamics and species diversity, and we modeled the community's potential to suppress pests. Abundance of coccinellids varied widely between 1989 and 2012 and became increasingly exotic-dominated. More than 71% of 57,813 adult coccinellids captured over the 24-year study were exotic species. Shannon diversity increased slightly over time, but herbivore suppression potential of the community remained roughly constant over the course of the study. However, both Shannon diversity and herbivore suppression potential due to native species declined over time in all habitats. The relationship between Shannon diversity and herbivore suppression potential varied with habitat type: a positive relationship in forest and perennial habitats, but was uncorrelated in annual habitats. This trend may have been because annual habitats were dominated by a few, highly voracious exotic species. Our results indicated that although the composition of the coccinellid community in southwestern Michigan has changed dramatically in the past several decades, its function has remained relatively unchanged in both agricultural and natural habitats. While this is encouraging from the perspective of pest management, it should be noted that losses of one of the dominant exotic coccinellids could result in a rapid decline in pest suppression services if the remaining community is unable to respond.


Subject(s)
Coleoptera/physiology , Food Chain , Predatory Behavior/physiology , Animals , Female , Male , Population Dynamics
6.
PLoS One ; 5(6): e11250, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20582315

ABSTRACT

BACKGROUND: Selection of pesticides with small ecological footprints is a key factor in developing sustainable agricultural systems. Policy guiding the selection of pesticides often emphasizes natural products and organic-certified pesticides to increase sustainability, because of the prevailing public opinion that natural products are uniformly safer, and thus more environmentally friendly, than synthetic chemicals. METHODOLOGY/PRINCIPAL FINDINGS: We report the results of a study examining the environmental impact of several new synthetic and certified organic insecticides under consideration as reduced-risk insecticides for soybean aphid (Aphis glycines) control, using established and novel methodologies to directly quantify pesticide impact in terms of biocontrol services. We found that in addition to reduced efficacy against aphids compared to novel synthetic insecticides, organic approved insecticides had a similar or even greater negative impact on several natural enemy species in lab studies, were more detrimental to biological control organisms in field experiments, and had higher Environmental Impact Quotients at field use rates. CONCLUSIONS/SIGNIFICANCE: These data bring into caution the widely held assumption that organic pesticides are more environmentally benign than synthetic ones. All pesticides must be evaluated using an empirically-based risk assessment, because generalizations based on chemical origin do not hold true in all cases.


Subject(s)
Aphids , Choice Behavior , Conservation of Natural Resources , Glycine max/microbiology , Pesticides , Animals , Humans
7.
Environ Entomol ; 38(4): 1106-16, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19689889

ABSTRACT

The predatory beetle assemblage of Ontario carrot and sweet potato fields was described and assessed to identify species of interest to the control of the emerging pest millipede Cylindroiulus caeruleocinctus (Wood) (Diplopoda: Julidae). Pterostichus melanarius (Coleoptera: Carabidae) was identified as a dominant species, and seven other carabid species [Pterostichus melanarius (Illiger), Harpalus pensylvanicus (DeGeer), Ophonus puncticeps (Stephens), H. erraticus Say, Bembidion quadrimaculatum oppositum Say, Poecilus chalcites (Say), Scarites subterraneus Fabricius, and Pterostichus permundus (Say)] were identified as common species on the basis of activity density. Common species became more abundant as the growing season progressed. In laboratory bioassays, P. melanarius preyed on millipedes regardless of prey size, whereas H. erraticus never selected millipedes as prey. A significant positive spatiotemporal relationship was found between P. melanarius and C. caeruleocinctus in sweet potato fields. P. melanarius was found to be a natural enemy of C. caeruleocinctus, and other common carabid species warrant future study. The role of Staphylinidae in millipede control could not be elucidated, likely because of low trapping efficiency. Tachinus corticinus Gravenhorst, an introduced staphylinid from Europe, was newly recorded in Ontario, extending its North American range considerably westward from the province of Quebec. The results of this study are an important foundational step toward developing a successful integrated pest management strategy for controlling millipede damage in crops.


Subject(s)
Coleoptera , Daucus carota , Ipomoea batatas , Pest Control, Biological , Predatory Behavior , Animals , Arthropods , Biodiversity , Food Preferences , Ontario , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...