Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 67(5): 1409-1417, 2020 05.
Article in English | MEDLINE | ID: mdl-31449002

ABSTRACT

Implantable sensors provide long-term, accurate physiological measurements after a minimally invasive procedure, particularly when designed as transponders. Wireless interrogation of deeply implanted transponders with RF remains a challenge due to the high loss at the skin-air interface and large tissue RF absorption. This paper presents a system for wirelessly interrogating surface acoustic wave (SAW) sensors implanted in the main pulmonary artery (PA), where the pressure (PAP) is a very important parameter in the management of heart failure patients. The proposed PAP monitoring system consists of an implantable SAW pressure sensor integrated with an antenna and anchor in a housing, an external antenna and an electronic interrogator. The PAP is determined by measuring the frequency of the echo signal from SAW sensor accurately. An asymmetric antenna was designed and integrated with the sensor. The combination of simulation, theoretical calculation and phantom measurement indicates that the path loss to the implant location, about 6 cm below the skin, is around 25 dB. A portable interrogator was designed based on a dual conversion receiver and single echo high frequency sampling approach to assess achievable frequency estimation accuracy predicted by Cramer-Rao Lower Bound (CRLB) analysis. The system was characterized using a high quality (Q) factor SAW sensor, fabricated at wafer level, wire-connected to the interrogator via an attenuator to simulate path loss. The signal-to-noise ratio (SNR) of captured echo signals was calculated and used in CRLB analysis. The analysis indicates that without using signal post processing, the sensor sensitivity has to be at least 440 Hz/mmHg in order to achieve a target 1 mmHg accuracy. Although the current sensor sensitivity is only 200 Hz/mmHg, the in vivo measurement showed that acceptable accuracy can be obtained by signal post processing. The results from an invasive catheter tip transducer measured simultaneously with the SAW sensor showed that the differences in pulse pressure and relative mean pressure are 0.8 mmHg and 1.4 mmHg, respectively. The accuracy could be further improved by increasing the sensor Q factor and sensitivity and reducing path loss.


Subject(s)
Prostheses and Implants , Transducers , Electronics , Humans , Monitoring, Physiologic , Sound
2.
Healthc Technol Lett ; 1(2): 51-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26609377

ABSTRACT

The frequency response of an implantable antenna is key to the performance of a wireless implantable sensor. If the antenna detunes significantly, there are substantial power losses resulting in loss of accuracy. One reason for detuning is because of a change in the surrounding environment of an antenna. The pulsating anatomy of the human heart constitutes such a changing environment, so detuning is expected but this has not been quantified dynamically before. Four miniature implantable antennas are presented (two different geometries) along with which are placed within the heart of living swine the dynamic reflection coefficients. These antennas are designed to operate in the short range devices frequency band (863-870 MHz) and are compatible with a deeply implanted cardiovascular pressure sensor. The measurements recorded over 27 seconds capture the effects of the beating heart on the frequency tuning of the implantable antennas. When looked at in the time domain, these effects are clearly physiological and a combination of numerical study and posthumous autopsy proves this to be the case, while retrospective simulation confirms this hypothesis. The impact of pulsating anatomy on antenna design and the need for wideband implantable antennas is highlighted.

3.
Biomed Microdevices ; 15(5): 737-49, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23559403

ABSTRACT

In this paper, the development of a fully implantable wireless sensor able to provide continuous real-time accurate pressure measurements is presented. Surface Acoustic Wave (SAW) technology was used to deposit resonators on crystalline quartz wafers; the wafers were then assembled to produce a pressure sensitive device. Excitation and reading via a miniature antenna attached to the pressure sensor enables continuous external interrogation. The main advantages of such a configuration are the long term stability of quartz and the low power necessary for the interrogation, which allows 24/7 interrogation by means of a hand-held, battery powered device. Such data are of vital importance to clinicians monitoring and treating the effects of hypertension and heart failure. A prototype was designed and tested using both a bio-phantom test rig and an animal model. The pressure traces for both compare very well with a commercially available catheter tip pressure transducer. The work presented in this paper is the first known wireless pressure data from the left ventricle of the heart of a living swine.


Subject(s)
Blood Pressure Determination/instrumentation , Blood Pressure Determination/methods , Prostheses and Implants , Wireless Technology , Animals , Blood Pressure , Equipment Design , Models, Animal , Swine , Transducers, Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...