Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(14): 9880-9887, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38536667

ABSTRACT

Small molecule structures and their applications rely on good knowledge of their atomic arrangements. However, the crystal structures of these compounds and materials, which are often composed of fine crystalline domains, cannot be determined with single-crystal X-ray diffraction. Three-dimensional electron diffraction (3D ED) is already becoming a reliable method for the structure analysis of submicrometer-sized organic materials. The reduction of electron beam damage is essential for successful structure determination and often prevents the analysis of organic materials at room temperature, not to mention high temperature studies. In this work, we apply advanced 3D ED methods at different temperatures enabling the accurate structure determination of two phases of Pigment Orange 34 (C34H28N8O2Cl2), a biphenyl pyrazolone pigment that has been industrially produced for more than 80 years and used for plastics application. The crystal structure of the high-temperature phase, which can be formed during plastic coloration, was determined at 220 °C. For the first time, we were able to observe a reversible phase transition in an industrial organic pigment in the solid state, even with atomic resolution, despite crystallites being submicrometer in size. By localizing hydrogen atoms, we were even able to detect the tautomeric state of the molecules at different temperatures. This demonstrates that precise, fast, and low-dose 3D ED measurements enable high-temperature studies the door for general in situ studies of nanocrystalline materials at the atomic level.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34835821

ABSTRACT

Hybrid perovskite materials are one of the most promising candidates for optoelectronic applications, e.g., solar cells and LEDs, which can be produced at low cost compared to established materials. Although this field of research has seen a huge upsurge in the past decade, there is a major lack in understanding the underlying processes, such as shape-property relationships and the role of defects. Our aerosol-assisted synthesis pathway offers the possibility to obtain methylammonium lead bromide (MAPbBr3) microcrystals from a liquid single source precursor. The differently shaped particles are aligned on several substrates, without using a directing agent or other additives. The obtained particles show good stability under dry conditions. This allows us to characterize these materials and their pure surfaces at the single-crystal level using time- and spatially resolved methods, without any influences of size-dependent effects. By optimizing the precursor for the aerosol process, we were able to eliminate any purification steps and use the materials as processed. In addition, we performed theoretical simulations to deepen the understanding of the underlying processes in the formation of the different crystal facets and their specific properties. The model system presented provides insights into the shape-related properties of MAPbBr3 single crystals and their directed but ligand-free synthesis.

3.
ACS Appl Mater Interfaces ; 9(13): 11599-11608, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28290655

ABSTRACT

Heterogeneous catalysis can be understood as a phenomenon which strongly relies on the occurrence of thermodynamically less favorable surface motifs like defects or high-energy planes. Because it is very difficult to control such parameters, an interesting approach is to explore metastable polymorphs of the respective solids. The latter is not an easy task as well because the emergence of polymorphs is dictated by kinetic control and materials with high surface area are required. Further, an inherent problem is that high temperatures required for many catalytic reactions can also induce the transformation to the thermodynamically stable modification. Alumina (Al2O3) was selected for the current study as it exists not only in the stable α-form but also as the metastable γ-polymorph. Kinetic control was realized by combining an aerosol-based synthesis approach and a highly reactive, volatile precursor (AlMe3). Monolithic flakes of Al2O3 with a highly porous, hierarchical structure (micro-, meso-, and macropores connected to each other) resemble so-called aerogels, which are normally known only from wet sol-gel routes. Monolothic aerogel flakes can be separated from the gas phase without supercritical drying, which in principle allows for a continuous preparation of the materials. Process parameters can be adjusted so the material is composed exclusively of the desired γ-modification. The γ-Al2O3 aerogels were much more stable than they should be, and even after extended (80 h) high-temperature (1200 °C) treatment only an insignificant part has converted to the thermodynamically stable α-phase. The latter phenomenon was assigned to the extraordinary thermal insulation properties of aerogels. Finally, the material was tested concerning the catalytic dehydration of 1-hexanol. Comparison to other Al2O3 materials with the same surface area demonstrates that the γ-Al2O3 are superior in activity and selectivity regarding the formation of the desired product 1-hexene.

SELECTION OF CITATIONS
SEARCH DETAIL
...