Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 82(7): 3038-44, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20218700

ABSTRACT

Fourier transform-infrared (FT-IR) spectroscopy has gained considerable attention among the forensic scientists because it shows high sensitivity and selectivity and offers near real time detection of analyzed samples. However, the amount of obtained information due to complexity of the measured spectra forces the use of additional data processing. Application of the multivariate statistical techniques for the analysis of the FT-IR data seems to be necessary in order to enable feature extraction, proper evaluation, and identification of obtained spectra. In this article, an attempt to develop a feasible procedure for characterization of spectroscopic signatures of the explosive materials in the remnants after explosion has been made. All spectra were derived after analysis of samples from debris after especially prepared and performed blasts with the use of three various highly explosive materials: C-4, 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN). Two well-known multivariate statistical methods, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were tested in order to classify the samples into separate classes using a broad wavelength data range (4000-600 cm(-1)) on collected spectra sets. After many trials it seems that PCA is the best choice for the mentioned earlier tasks. It was found that only three principal components carry over 99.6% of variance within the sample set. The results show that FT-IR spectroscopy in combination with multivariate methods is well-suited for identification and differentiation purposes even in quite large data sets, and for that reason forensic laboratories could employ these methods for rapid screening analysis.

2.
Opt Express ; 17(26): 23914-9, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20052102

ABSTRACT

Modern metamaterials face functional constraints as they are commonly embedded in or deposited on dielectric materials. We provide a new solution by microfabricating a completely free-standing all-metal self-supported metamaterial. Using upright S-string architecture with the distinctive feature of metallic transverse interconnects, we form a locally stiff, globally flexible space-grid. Infrared Fourier transform interferometry reveals the typical double-peak structure of a magnetically excited left-handed and an electrically excited right-handed pass-band that is maintained under strong bending and heating, and is sensitive to dielectrics. Exploiting UV/X-ray lithography and ultimately plastic moulding, meta-foils can be mass manufactured cost-effectively to serve as optical elements.


Subject(s)
Manufactured Materials/analysis , Metals/chemistry , Light , Materials Testing , Scattering, Radiation , Terahertz Radiation
3.
Opt Express ; 16(18): 13773-80, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18772988

ABSTRACT

Using micromanufactured S-shaped gold strings suspended in free space by means of window-frames, we experimentally demonstrate an electromagnetic meta-material (EM(3)) in which the metallic structures are no longer embedded in matrices or deposited on substrates such that the response is solely determined by the geometrical parameters and the properties of the metal. Two carefully aligned and assembled window-frames form a bi-layer chip that exhibits 2D left-handed pass-bands corresponding to two different magnetic resonant loops in the range of 1.4 to 2.2 THz as characterized by Fourier transform interferometry and numerical simulation. Chips have a comparably large useful area of 56 mm(2). Our results are a step towards providing EM(3) that fulfill the common notions of a material.


Subject(s)
Gold/chemistry , Manufactured Materials , Microwaves , Electromagnetic Fields , Infrared Rays , Materials Testing
4.
Geophys Res Lett ; 26(24): 3657-60, 1999 Dec 15.
Article in English | MEDLINE | ID: mdl-11543402

ABSTRACT

The history and size of the water reservoirs on early Mars can be constrained using isotopic ratios of deuterium to hydrogen. We present new laboratory measurements of the ultraviolet cross-sections of H2O and its isotopomers, and modeling calculations in support of a photo-induced fractionation effect (PHIFE), that reconciles a discrepancy between past theoretical modeling and recent observations. This supports the hypothesis that Mars had an early warm atmosphere and has lost at least a 50-m global layer of water. Likely applications of PHIFE to other planetary atmospheres are sketched.


Subject(s)
Atmosphere/chemistry , Deuterium/chemistry , Hydrogen/chemistry , Mars , Water/chemistry , Chemical Fractionation , Deuterium/radiation effects , Evolution, Planetary , Exobiology , Extraterrestrial Environment , Hydrogen/radiation effects , Light , Models, Chemical , Photolysis , Synchrotrons , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...