Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645250

ABSTRACT

In this study, we tested a novel approach of "repurposing" a biomarker typically associated with breast cancer for use in melanoma. HER2/neu is a well characterized biomarker in breast cancer for which effective anti-HER2/neu therapies are readily available. We constructed a lentivirus encoding c-erb-B2 (the animal homolog to HER2/neu). This was used to transfect B16 melanoma in vitro for use in an orthotopic preclinical mouse model, which resulted in expression of c-erb-B2 as a neoantigen target for anti-c-erb-B2 monoclonal antibody (7.16.4). The c-erb-B2-expressing melanoma was designated B16/neu. 7.16.4 produced statistically significant in vivo anti-tumor responses against B16/neu. This effect was mediated by NK-cell antibody-dependent cell-mediated cytotoxicity. To further model human melanoma (which expresses <5% HER2/neu), our c-erb-B2 encoding lentivirus was used to inoculate naïve (wild-type) B16 tumors in vivo, resulting in successful c-erb-B2 expression. When combined with 7.16.4, anti-tumor responses were again demonstrated where approximately 40% of mice treated with c-erb-B2 lentivirus and 7.16.4 achieved complete clinical response and long-term survival. For the first time, we demonstrated a novel strategy to repurpose c-erb-B2 as a neoantigen target for melanoma. Our findings are particularly significant in the contemporary setting where newer anti-HER2/neu antibody-drug candidates have shown increased efficacy.

2.
ACS Biomater Sci Eng ; 10(5): 3412-3424, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38613483

ABSTRACT

Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a "local" dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone (p = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group.


Subject(s)
Liposomes , Melanoma, Experimental , Mice, Inbred C57BL , Nanoparticles , Phenylephrine , Animals , Phenylephrine/pharmacology , Phenylephrine/administration & dosage , Nanoparticles/chemistry , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Mice , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Melphalan/therapeutic use , Melphalan/administration & dosage , Melphalan/pharmacology , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/pathology
3.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37918918

ABSTRACT

BACKGROUND: Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing. METHODS: ID8 tumor cells were injected intraperitoneally into mice. Mice were treated with Th17-DC or conventional DC (cDC) vaccine alone or with immune checkpoint blockade (ICB). Systemic immunity, tumor associated immunity, tumor size and survival were examined using a variety of experimental strategies. RESULTS: Th17-DC vaccines increased Th17 T cells in the tumor microenvironment, reshaped the myeloid microenvironment, and improved mouse survival compared with cDC vaccines. ICB had limited efficacy in OC, but Th17-inducing DC vaccination sensitized it to anti-PD-1 ICB, resulting in durable progression-free survival by overcoming IL-10-mediated resistance. Th17-DC vaccine efficacy, alone or with ICB, was mediated by CD4 T cells, but not CD8 T cells. CONCLUSIONS: These findings emphasize using biologically relevant immune modifiers, like Th17-DC vaccines, in OC treatment to reshape the tumor microenvironment and enhance clinical responses to ICB therapy.


Subject(s)
CD4-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Mice , Animals , Immune Checkpoint Inhibitors , CD8-Positive T-Lymphocytes , Ovarian Neoplasms/therapy , Dendritic Cells , Tumor Microenvironment
4.
Mol Cancer ; 22(1): 23, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726126

ABSTRACT

Cancer remains a leading cause of death worldwide, placing a significant burden on healthcare systems as well as the global economy. Rare cancers comprise a group of about 200 cancers that individually occur at extremely low frequencies. In the United States (US), their frequency is approximately 15 cases per 100,000 people, and it is even lower in Europe with approximately 6 cases per 100,000 people. However, combined their frequency of occurrence is much higher than any singular cancer. Cancer treatment and management has tremendously improved in the last decade, particularly with the administration of immune-based therapies. The four most prevalent immune-based therapies are (1) the use of immune-checkpoint inhibitors, (2) macrophage therapy, (3) Chimeric Antigen Receptor (CAR) T cell therapy, and (4) neoantigen-based therapies. In our review, we discuss these various aproaches and their implementation in the treatment of a variety of rare cancers. Furthermore, we discuss their limitations and potential strategies to overcome them to enhance the therapeutic efficacy of these approaches. Finally, our article presents the future directions and other additional immune therapies that may be incorporated into the treatment of rare cancers.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Immunotherapy , Immunotherapy, Adoptive
5.
Cancer Res ; 77(23): 6667-6678, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28993412

ABSTRACT

Ligation of programmed cell death-1 (PD-1) in the tumor microenvironment is known to inhibit effective adaptive antitumor immunity. Blockade of PD-1 in humans has resulted in impressive, durable regression responses in select tumor types. However, durable responses have been elusive in ovarian cancer patients. PD-1 was recently shown to be expressed on and thereby impair the functions of tumor-infiltrating murine and human myeloid dendritic cells (TIDC) in ovarian cancer. In the present work, we characterize the regulation of PD-1 expression and the effects of PD-1 blockade on TIDC. Treatment of TIDC and bone marrow-derived dendritic cells (DC) with IL10 led to increased PD-1 expression. Both groups of DCs also responded to PD-1 blockade by increasing production of IL10. Similarly, treatment of ovarian tumor-bearing mice with PD-1 blocking antibody resulted in an increase in IL10 levels in both serum and ascites. While PD-1 blockade or IL10 neutralization as monotherapies were inefficient, combination of these two led to improved survival and delayed tumor growth; this was accompanied by augmented antitumor T- and B-cell responses and decreased infiltration of immunosuppressive MDSC. Taken together, our findings implicate compensatory release of IL10 as one of the adaptive resistance mechanisms that undermine the efficacy of anti-PD-1 (or anti-PD-L1) monotherapies and prompt further studies aimed at identifying such resistance mechanisms. Cancer Res; 77(23); 6667-78. ©2017 AACR.


Subject(s)
Interleukin-10/metabolism , Interleukin-10/pharmacology , Ovarian Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/biosynthesis , Animals , B-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Drug Resistance, Neoplasm , Female , Humans , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/drug therapy , RNA Interference , RNA, Small Interfering/genetics , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...