Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Geroscience ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992335

ABSTRACT

The escalating global burden of age-related neurodegenerative diseases and associated healthcare costs necessitates innovative interventions to stabilize or enhance cognitive functions. Deficits in working memory (WM) are linked to alterations in prefrontal theta-gamma cross-frequency coupling. Low-intensity transcranial alternating current stimulation (tACS) has emerged as a non-invasive, low-cost approach capable of modulating ongoing oscillations in targeted brain areas through entrainment. This study investigates the impact of multi-session peak-coupled theta-gamma cross-frequency tACS administered to the dorsolateral prefrontal cortex (DLPFC) on WM performance in older adults. In a randomized, sham-controlled, triple-blinded design, 77 participants underwent 16 stimulation sessions over six weeks while performing n-back tasks. Signal detection measures revealed increased 2-back sensitivity and robust modulations of response bias, indicating improved WM and decision-making adaptations, respectively. No effects were observed in the 1-back condition, emphasizing dependencies on cognitive load. Repeated tACS reinforces behavioral changes, indicated by increasing effect sizes. This study supports prior research correlating prefrontal theta-gamma coupling with WM processes and provides unique insights into the neurocognitive benefits of repeated tACS intervention. The well-tolerated and highly effective multi-session tACS intervention among the elderly underscores its therapeutic potential in vulnerable populations.

2.
Clin Neurophysiol ; 164: 168-179, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901112

ABSTRACT

OBJECTIVE: This study investigated the efficacy of combining at-home anodal transcranial direct current stimulation (tDCS) of the left primary motor cortex (M1) with mindfulness meditation (MM) in fibromyalgia patients trained in mindfulness. METHODS: Thirty-seven patients were allocated to receive ten daily sessions of MM paired with either anodal or sham tDCS over the primary motor cortex. Primary outcomes were pain intensity and quality of life. Secondary outcomes were psychological impairment, sleep quality, mood, affective pain, mindfulness level, and transcranial magnetic stimulation (TMS) measures of cortical excitability. Outcomes were analyzed pre- and post-treatment, with a one-month follow-up. RESULTS: We found post-tDCS improvement in all clinical outcomes, including mindfulness level, except for positive affect and stress, in both groups without significant difference between active and sham conditions. No significant group*time interaction was found for all clinical and TMS outcomes. CONCLUSIONS: Our findings demonstrate no synergistic or add-on efffect of anodal tDCS of the left M1 compared to the proper effect of MM in patients with fibromyalgia. SIGNIFICANCE: Our findings challenge the potential of combining anodal tDCS of the left M1 and MM in fibromyalgia.


Subject(s)
Fibromyalgia , Meditation , Mindfulness , Motor Cortex , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Middle Aged , Fibromyalgia/therapy , Fibromyalgia/psychology , Fibromyalgia/physiopathology , Meditation/methods , Mindfulness/methods , Motor Cortex/physiopathology , Motor Cortex/physiology , Transcranial Direct Current Stimulation/methods , Treatment Outcome
3.
EMBO Mol Med ; 16(7): 1657-1674, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839930

ABSTRACT

Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/blood , Parkinson Disease/blood , Parkinson Disease/metabolism , Parkinson Disease/genetics , Aged , Male , Female , Middle Aged , Protein Multimerization , Protein Aggregates
4.
Nat Med ; 30(6): 1771-1783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890531

ABSTRACT

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values >0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , DNA-Binding Proteins , Extracellular Vesicles , Frontotemporal Dementia , tau Proteins , Humans , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , tau Proteins/blood , tau Proteins/metabolism , Extracellular Vesicles/metabolism , Frontotemporal Dementia/blood , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Biomarkers/blood , DNA-Binding Proteins/blood , DNA-Binding Proteins/genetics , Female , Male , Aged , Middle Aged , Supranuclear Palsy, Progressive/blood , Supranuclear Palsy, Progressive/diagnosis , Protein Isoforms/blood
5.
Acta Neuropathol Commun ; 12(1): 82, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38812004

ABSTRACT

Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.


Subject(s)
Autophagy , Axonal Transport , Optic Nerve , Animals , Axonal Transport/physiology , Optic Nerve/pathology , Optic Nerve/metabolism , Rats , Autophagy/physiology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Male , Axons/pathology , Axons/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/metabolism , Rats, Sprague-Dawley , Female
6.
J Neurol ; 271(5): 2639-2648, 2024 May.
Article in English | MEDLINE | ID: mdl-38353748

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients' safety and management. OBJECTIVES: To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. METHODS: Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. RESULTS: The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. CONCLUSIONS: MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients.


Subject(s)
Comorbidity , Drug Interactions , Multiple System Atrophy , Polypharmacy , Humans , Multiple System Atrophy/epidemiology , Multiple System Atrophy/drug therapy , Cross-Sectional Studies , Male , Female , Aged , Middle Aged , Prevalence , Germany/epidemiology
7.
J Neuroinflammation ; 21(1): 62, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419079

ABSTRACT

BACKGROUND: Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson's disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB). FINDINGS: The present study aims to evaluate the patho-physiological impact of α-syn AAbs on primary brain cells, i.e., on spontaneously active neurons and on astrocytes. Exposure of neuron-astrocyte co-cultures to human serum containing α-syn AAbs mediated a dose-dependent reduction of spontaneous neuronal activity, and subsequent neurodegeneration. Removal specifically of α-syn AAbs from the serum prevented neurotoxicity, while purified, commercial antibodies against α-syn mimicked the neurodegenerative effect. Mechanistically, we found a strong calcium flux into neurons preceding α-syn AAbs-induced cell death, specifically through NMDA receptors. NMDA receptor antagonists prevented neurodegeneration upon treatment with α-syn (auto)antibodies. α-syn (auto)antibodies did not affect astrocyte survival. However, in presence of α-syn, astrocytes reacted to α-syn antibodies by secretion of the chemokine RANTES. CONCLUSION: These findings provide a novel basis to explain how a combination of BBB impairment and infiltration of IgGs targeting synuclein may contribute to neurodegeneration in PD and argue for caution with α-syn immunization therapies for treatment of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Parkinson Disease/metabolism , Brain/metabolism , Neurons/metabolism , Immunoglobulins/metabolism
8.
Sci Rep ; 14(1): 5005, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424123

ABSTRACT

Glypicans are biomarkers for various pathologies, including cardiovascular disease, cancer and diabetes. Increasing evidence suggests that glypicans also play a role in the context of neurodegenerative disorders. Initially described as supporting functionality of synapses via glutamate receptors during CNS development, Glypican 4 (GPC-4) also plays a role in the context of dementia via tau hyperphosphorylation in Alzheimer's disease, which is also a co-pathology in Parkinson's disease dementia. However, clinical evidence of circulating GPC-4 in Parkinson's disease (PD) is missing so far. We therefore investigated GPC-4 in biofluids of PD patients. We analyzed GPC-4 levels in cerebrospinal fluid (CSF, n = 140), serum (n = 80), and tear fluid samples (n = 70) of PD patients and control subjects in a similar age range by ELISA (serum, CSF) and western blot (tear fluid). Expression of circulating GPC-4 was confirmed in all three biofluids, with highest levels in serum. Interestingly, GPC-4 levels were age-dependent, and multiple regression analysis revealed a significant association between GPC-4 serum levels and MoCA score, suggesting an involvement of GPC-4 in PD-associated cognitive decline. Furthermore, stratification of PD patients for vascular risk factors revealed a significant increase of GPC-4 serum levels in PD patients with vascular risk factors. Our results suggest GPC-4 as a clinical biomarker for vascular risk stratification in order to identify PD patients with increased risk of developing dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Alzheimer Disease/complications , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/complications , Dementia/complications , Glypicans , Parkinson Disease/complications , Parkinson Disease/cerebrospinal fluid , Risk Factors , tau Proteins/cerebrospinal fluid
9.
Cell Mol Life Sci ; 81(1): 30, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212456

ABSTRACT

BACKGROUND: Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS: In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS: Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION: NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.


Subject(s)
RNA, Long Noncoding , Stroke , Animals , Mice , Apoptosis/genetics , Autophagy/genetics , Lipid Droplets/metabolism , Microglia/metabolism , Oxygen/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Stroke/genetics , Stroke/metabolism
10.
Biomed Pharmacother ; 170: 115962, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042110

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor protein predominantly expressed in microglia within the central nervous system (CNS). TREM2 regulates multiple microglial functions, including lipid metabolism, immune reaction, inflammation, and microglial phagocytosis. Recent studies have found that TREM2 is highly expressed in activated microglia after ischemic stroke. However, the role of TREM2 in the pathologic response after stroke remains unclear. Herein, TREM2-deficient microglia exhibit an impaired phagocytosis rate and cholesteryl ester (CE) accumulation, leading to lipid droplet formation and upregulation of Perilipin-2 (PLIN2) expression after hypoxia. Knockdown of TREM2 results in increased lipid synthesis (PLIN2, SOAT1) and decreased cholesterol clearance and lipid hydrolysis (LIPA, ApoE, ABCA1, NECH1, and NPC2), further impacting microglial phenotypes. In these lipid droplet-rich microglia, the TGF-ß1/Smad2/3 signaling pathway is downregulated, driving microglia towards a pro-inflammatory phenotype. Meanwhile, in a neuron-microglia co-culture system under hypoxic conditions, we found that microglia lost their protective effect against neuronal injury and apoptosis when TREM2 was knocked down. Under in vivo conditions, TREM2 knockdown mice express lower TGF-ß1 expression levels and a lower number of anti-inflammatory M2 phenotype microglia, resulting in increased cerebral infarct size, exacerbated neuronal apoptosis, and aggravated neuronal impairment. Our work suggests that TREM2 attenuates stroke-induced neuroinflammation by modulating the TGF-ß1/Smad2/3 signaling pathway. TREM2 may play a direct role in the regulation of inflammation and also exert an influence on the post-ischemic inflammation and the stroke pathology progression via regulation of lipid metabolism processes. Thus, underscoring the therapeutic potential of TREM2 agonists in ischemic stroke and making TREM2 an attractive new clinical target for the treatment of ischemic stroke and other inflammation-related diseases.


Subject(s)
Brain Injuries , Ischemic Stroke , Stroke , Animals , Mice , Brain Injuries/metabolism , Cholesterol Esters/metabolism , Inflammation/metabolism , Ischemic Stroke/metabolism , Lipid Droplets/metabolism , Microglia/metabolism , Stroke/genetics , Stroke/metabolism , Transforming Growth Factor beta1/metabolism
11.
J Neurol ; 271(2): 782-793, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803149

ABSTRACT

BACKGROUND: Progressive supranuclear palsy (PSP) is usually diagnosed in elderly. Currently, little is known about comorbidities and the co-medication in these patients. OBJECTIVES: To explore the pattern of comorbidities and co-medication in PSP patients according to the known different phenotypes and in comparison with patients without neurodegenerative disease. METHODS: Cross-sectional data of PSP and patients without neurodegenerative diseases (non-ND) were collected from three German multicenter observational studies (DescribePSP, ProPSP and DANCER). The prevalence of comorbidities according to WHO ICD-10 classification and the prevalence of drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were evaluated using AiDKlinik®. RESULTS: In total, 335 PSP and 275 non-ND patients were included in this analysis. The prevalence of diseases of the circulatory and the nervous system was higher in PSP at first level of ICD-10. Dorsopathies, diabetes mellitus, other nutritional deficiencies and polyneuropathies were more frequent in PSP at second level of ICD-10. In particular, the summed prevalence of cardiovascular and cerebrovascular diseases was higher in PSP patients. More drugs were administered in the PSP group leading to a greater percentage of patients with polypharmacy. Accordingly, the prevalence of potential drug-drug interactions was higher in PSP patients, especially severe and moderate interactions. CONCLUSIONS: PSP patients possess a characteristic profile of comorbidities, particularly diabetes and cardiovascular diseases. The eminent burden of comorbidities and resulting polypharmacy should be carefully considered when treating PSP patients.


Subject(s)
Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Humans , Aged , Supranuclear Palsy, Progressive/drug therapy , Supranuclear Palsy, Progressive/epidemiology , Supranuclear Palsy, Progressive/diagnosis , Neurodegenerative Diseases/epidemiology , Cross-Sectional Studies , Comorbidity
12.
Int J Mol Sci ; 24(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139158

ABSTRACT

Hypoxia triggers reactive microglial inflammation and lipid droplet (LD) accumulation under stroke conditions, although the mutual interactions between these two processes are insufficiently understood. Hence, the involvement of transforming growth factor (TGF)-ß1 in inflammation and LD accumulation in cultured microglia exposed to hypoxia were analyzed herein. Primary microglia were exposed to oxygen-glucose deprivation (OGD) injury and lipopolysaccharide (LPS) stimulation. For analyzing the role of TGF-ß1 patterns under such conditions, a TGF-ß1 siRNA and an exogenous recombinant TGF-ß1 protein were employed. Further studies applied Triacsin C, an inhibitor of LD formation, in order to directly assess the impact of LD formation on the modulation of inflammation. To assess mutual microglia-to-neuron interactions, a co-culture model of these cells was established. Upon OGD exposure, microglial TGF-ß1 levels were significantly increased, whereas LPS stimulation yielded decreased levels. Elevating TGF-ß1 expression proved highly effective in suppressing inflammation and reducing LD accumulation in microglia exposed to LPS. Conversely, inhibition of TGF-ß1 led to the promotion of microglial cell inflammation and an increase in LD accumulation in microglia exposed to OGD. Employing the LD formation inhibitor Triacsin C, in turn, polarized microglia towards an anti-inflammatory phenotype. Such modulation of both microglial TGF-ß1 and LD levels significantly affected the resistance of co-cultured neurons. This study provides novel insights by demonstrating that TGF-ß1 plays a protective role against microglia-mediated neuroinflammation through the suppression of LD accumulation. These findings offer a fresh perspective on stroke treatment, suggesting the potential of targeting this pathway for therapeutic interventions.


Subject(s)
Microglia , Stroke , Humans , Microglia/metabolism , Transforming Growth Factor beta1/metabolism , Lipopolysaccharides/pharmacology , Neuroinflammatory Diseases , Lipid Droplets , Stroke/metabolism , Hypoxia/metabolism
13.
Theranostics ; 13(12): 4197-4216, 2023.
Article in English | MEDLINE | ID: mdl-37554272

ABSTRACT

Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release.


Subject(s)
Aquaporin 4 , Brain Injuries , Extracellular Vesicles , Stroke , Animals , Mice , Aquaporin 4/metabolism , Brain Injuries/metabolism , Extracellular Vesicles/metabolism , Gliosis/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , Oxygen/metabolism , Stroke/metabolism
14.
Biomedicines ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37509455

ABSTRACT

Temporal interference stimulation (TIS) aims at targeting deep brain areas during transcranial electrical alternating current stimulation (tACS) by generating interference fields at depth. Although its modulatory effects have been demonstrated in animal and human models and stimulation studies, direct experimental evidence is lacking for its utility in humans (in vivo). Herein, we directly test and compare three different structures: firstly, we perform peripheral nerve and muscle stimulation quantifying muscle twitches as readout, secondly, we stimulate peri-orbitally with phosphene perception as a surrogate marker, and thirdly, we attempt to modulate the mean power of alpha oscillations in the occipital area as measured with electroencephalography (EEG). We found strong evidence for stimulation efficacy on the modulated frequency in the PNS, but we found no evidence for its utility in the CNS. Possible reasons for failing to activate CNS targets could be comparatively higher activation thresholds here or inhibitory stimulation components to the carrier frequency interfering with the effects of the modulated signal.

15.
J Neurochem ; 166(5): 862-874, 2023 09.
Article in English | MEDLINE | ID: mdl-37515330

ABSTRACT

Parkinson's disease (PD) affects a significant proportion of the population over the age of 60 years, and its prevalence is increasing. While symptomatic treatment is available for motor symptoms of PD, non-motor complications such as dementia result in diminished life quality for patients and are far more difficult to treat. In this study, we analyzed PD-associated alterations in the hippocampus of PD patients, since this brain region is strongly affected by PD dementia. We focused on synapses, analyzing the proteome of post-mortal hippocampal tissue from 16 PD cases and 14 control subjects by mass spectrometry. Whole tissue lysates and synaptosomal fractions were analyzed in parallel. Differential analysis combined with bioinformatic network analyses identified neuronal pentraxin 1 (NPTX1) to be significantly dysregulated in PD and interacting with proteins of the synaptic compartment. Modulation of NPTX1 protein levels in primary hippocampal neuron cultures validated its role in synapse morphology. Our analysis suggests that NPTX1 contributes to synaptic pathology in late-stage PD and represents a putative target for novel therapeutic strategies.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Middle Aged , Parkinson Disease/metabolism , Proteomics/methods , Hippocampus/metabolism , Alzheimer Disease/pathology
17.
Ultrasound J ; 15(1): 29, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37285079

ABSTRACT

BACKGROUND AND AIMS: Neurovascular ultrasound (nvUS) of the epiaortic arteries is an integral part of the etiologic workup in patients with ischemic stroke. Aortic valve disease shares similar vascular risk profiles and therefore not only presents a common comorbidity, but also an etiologic entity. The aim of this study is to investigate the predictive value of specific Doppler curve flow characteristics in epiaortic arteries and the presence of aortic valve disease. METHODS: Retrospective, single-center analysis of ischemic stroke patients, both receiving full nvUS of the extracranial common- (CCA), internal- (ICA) and external carotid artery (ECA) and echocardiography (TTE/TEE) during their inpatient stay. A rater blinded for the TTE/TEE results investigated Doppler flow curves for the following characteristics: 'pulsus tardus et parvus' for aortic valve stenosis (AS) and 'bisferious pulse', 'diastolic reversal', 'zero diastole' and 'no dicrotic notch' for aortic valve regurgitation (AR). Predictive value of these Doppler flow characteristics was investigated using multivariate logistic regression models. RESULTS: Of 1320 patients with complete examination of Doppler flow curves and TTE/TEE, 75 (5.7%) showed an AS and 482 (36.5%) showed an AR. Sixty-one (4.6%) patients at least showed a moderate-to-severe AS and 100 (7.6%) at least showed a moderate-to-severe AR. After adjustment for age, coronary artery disease, arterial hypertension, diabetes mellitus, smoking, peripheral arterial disease, renal failure and atrial fibrillation, the following flow pattern predicted aortic valve disease: 'pulsus tardus et parvus' in the CCA and ICA was highly predictive for a moderate-to-severe AS (OR 1158.5, 95% CI 364.2-3684.8, p < 0.001). 'No dicrotic notch' (OR 102.1, 95% CI 12.4-839.4, p < 0.001), a 'bisferious pulse' (OR 10.8, 95% CI 3.2-33.9, p < 0.001) and a 'diastolic reversal' (OR 15.4, 95% CI 3.2-74.6, p < 0.001) in the CCA and ICA predicted a moderate-to-severe AR. The inclusion of Doppler flow characteristics of the ECA did not increase predictive value. CONCLUSIONS: Well defined, qualitative Doppler flow characteristics detectable in the CCA and ICA are highly predictive for aortic valve disease. The consideration of these flow characteristics can be useful to streamline diagnostic and therapeutic measures, especially in the outpatient setting.

18.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901765

ABSTRACT

Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neural Stem Cells , Neuroprotective Agents , Stroke , Humans , Neuroprotection , Brain Ischemia/drug therapy , Ischemic Stroke/drug therapy , Prospective Studies , Stroke/therapy , Neuroprotective Agents/therapeutic use
19.
J Transl Med ; 20(1): 413, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076207

ABSTRACT

BACKGROUND: Next generation sequencing (NGS) of human specimen is expected to improve prognosis and diagnosis of human diseases, but its sensitivity urges for well-defined sampling and standardized protocols in order to avoid error-prone conclusions. METHODS: In this study, large volumes of pooled human cerebrospinal fluid (CSF) were used to prepare RNA from human CSF-derived extracellular vesicles (EV) and from whole CSF, as well as from whole human serum and serum-derived EV. In all four fractions small and long coding and non-coding RNA expression was analyzed with NGS and transcriptome analyses. RESULTS: We show, that the source of sampling has a large impact on the acquired NGS pattern, and differences between small RNA fractions are more distinct than differences between long RNA fractions. The highest percentual discrepancy between small RNA fractions and the second highest difference between long RNA fractions is seen in the comparison of CSF-derived EV and whole CSF. Differences between miR (microRNA) and mRNA fractions of EV and the respective whole body fluid have the potential to affect different cellular and biological processes. I.e. a comparison of miR in both CSF fractions reveals that miR from EV target four transcripts sets involved in neurobiological processes, whereas eight others, also involved in neurobiological processes are targeted by miR found in whole CSF only. Likewise, three mRNAs sets derived from CSF-derived EV are associated with neurobiological and six sets with mitochondrial metabolism, whereas no such mRNA transcript sets are found in the whole CSF fraction. We show that trace amounts of blood-derived contaminations of CSF can bias RNA-based CSF diagnostics. CONCLUSIONS: This study shows that the composition of small and long RNA differ significantly between whole body fluid and its respective EV fraction and thus can affect different cellular and molecular functions. Trace amounts of blood-derived contaminations of CSF can bias CSF analysis. This has to be considered for a meaningful RNA-based diagnostics. Our data imply a transport of EV from serum to CSF across the blood-brain barrier.


Subject(s)
Biological Phenomena , Extracellular Vesicles , MicroRNAs , Extracellular Vesicles/genetics , Humans , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
20.
Theranostics ; 12(13): 5776-5802, 2022.
Article in English | MEDLINE | ID: mdl-35966580

ABSTRACT

Hypoxia is a central pathophysiological component in cancer, myocardial infarction and ischemic stroke, which represent the most common medical conditions resulting in long-term disability and death. Recent evidence suggests common signaling pathways in these diverse settings mediated by non-coding RNAs (ncRNAs), which are packaged in extracellular vesicles (EVs) protecting ncRNAs from degradation. EVs are a heterogeneous group of lipid bilayer-covered vesicles released from virtually all cells, which have important roles in intercellular communication. Recent studies pointed out that ncRNAs including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are selectively sorted into EVs, modulating specific aspects of cancer development, namely cell proliferation, migration, invasion, angiogenesis, immune tolerance or drug resistance, under conditions of hypoxia in recipient cells. In myocardial infarction and stroke, ncRNAs shuttled via EVs have been shown to control tissue survival and remodeling post-hypoxia by regulating cell injury, inflammatory responses, angiogenesis, neurogenesis or neuronal plasticity. This review discusses recent evidence on EV-associated ncRNAs in hypoxic cancer, myocardial infarction and stroke, discussing their cellular origin, biological function and disease significance. The emerging concept of lncRNA-circular RNA/ miRNA/ mRNA networks is outlined, upon which ncRNAs synergistically respond to hypoxia in order to modify disease responses. Particular notion is given to ncRNAs participating in at least two of the three conditions, which revealed a large degree of overlaps across pathophysiological conditions. Possible roles of EV-ncRNAs as therapeutic products or theranostic markers are defined.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , MicroRNAs , Myocardial Infarction , Neoplasms , RNA, Long Noncoding , Stroke , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , Hypoxia/genetics , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/metabolism , Stroke/genetics , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...