Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Wien Med Wochenschr ; 172(11-12): 247-255, 2022 Sep.
Article in English | MEDLINE | ID: mdl-32748365

ABSTRACT

Injection therapy is a frequently used method for the treatment of subacute and chronic low back pain (LBP) despite scant evidence for its effectiveness. To date there are relatively few studies comparing this method with other treatments. Moreover, there are many possible side effects associated with injection therapies, some of which are potentially life threatening. We present the case of a 59-year-old woman admitted to the emergency department with confluent abscess formations of autochthonous back muscles and staphylococcal sepsis caused by injection therapy performed by a general practitioner for LBP. The findings of this case report emphasize a careful selection of patients for this type of treatment and a multidisciplinary approach to treatment of LBP.


Subject(s)
Back Muscles , Low Back Pain , Abscess/chemically induced , Abscess/diagnosis , Abscess/drug therapy , Female , Humans , Injections, Spinal/adverse effects , Low Back Pain/drug therapy , Low Back Pain/etiology , Middle Aged
2.
Bone ; 147: 115915, 2021 06.
Article in English | MEDLINE | ID: mdl-33722771

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by impaired bone quality and quantity. Established imaging techniques have limited reliability in OI. The TX-Analyzer™ is a new, fractal-based software allowing a non-invasive assessment of bone structure based on conventional radiographs. We explored whether the TX-Analyzer™ can discriminate OI patients and healthy controls. Furthermore, we investigated the correlation between TX-Analyzer™ parameters and (i) bone mineral density (BMD) by Dual Energy X-ray Absorptiometry (DXA), (ii) trabecular bone score (TBS), and (iii) bone microstructure by high-resolution peripheral quantitative computed tomography (HR-pQCT). MATERIAL AND METHODS: Data of 29 adult OI patients were retrospectively analyzed. Standard radiographs of the thoracic and lumbar spine were evaluated using the TX-Analyzer™. Bone Structure Value (BSV), Bone Variance Value (BVV), and Bone Entropy Value (BEV) were measured at the vertebral bodies T7 to L5. Data were compared to a healthy, age- and gender-matched control group (n = 58). BMD by DXA, TBS, and trabecular bone microstructure by means of HR-pQCT were correlated to TX-Analyzer™ parameters in OI patients. The accuracy of the TX-Analyzer™ parameters in detecting OI was assessed with area under curve (AUC) analysis of receiver operating characteristic (ROC). RESULTS: BEV of the thoracic and the lumbar spine were significantly lower in OI patients compared to controls (both p < 0.001). BEV of the thoracic spine was significantly correlated to TBS (ρ = 0.427, p = 0.042) as well as trabecular number (Tb.N) at the radius (ρ = 0.603, p = 0.029) and inhomogeneity of the trabecular network (Tb.1/N.SD) at the radius (ρ = -0.610, p = 0.027), when assessed by HR-pQCT. No correlations were found between BEV and BMD by DXA. BEV of the thoracic and the lumbar spine had an AUC of 0.81 (95% confidence interval [CI] 0.67-0.94, p < 0.001) and 0.73 (95% CI 0.56-0.89, p = 0.008), respectively. BSV and BVV did not differ between OI patients and controls. CONCLUSION: The software TX-Analyzer™ is able to discriminate patients with OI from healthy controls. ROC curves of BEV values suggest a suitable clinical applicability. Low to no correlations with conventional methods suggest, that the TX-Analyzer™ may indicate a new and independent examination tool in OI.


Subject(s)
Osteogenesis Imperfecta , Absorptiometry, Photon , Adult , Bone Density , Fractals , Humans , Osteogenesis Imperfecta/diagnostic imaging , Reproducibility of Results , Retrospective Studies
3.
J Clin Med ; 9(12)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419268

ABSTRACT

Crohn's disease (CD) is associated with bone loss and increased fracture risk. TX-Analyzer™ is a new fractal-based technique to evaluate bone microarchitecture based on conventional radiographs. The aim of the present study was to evaluate the TX-Analyzer™ of the thoracic and lumbar spine in CD patients and healthy controls (CO) and to correlate the parameters to standard imaging techniques. 39 CD patients and 39 age- and sex-matched CO were analyzed. Demographic parameters were comparable between CD and CO. Bone structure value (BSV), bone variance value (BVV) and bone entropy value (BEV) were measured at the vertebral bodies of T7 to L4 out of lateral radiographs. Bone mineral density (BMD) and trabecular bone score (TBS) by dual energy X-ray absorptiometry (DXA) were compared to TX parameters. BSV and BVV of the thoracic spine of CD were higher compared to controls, with no difference in BEV. Patients were further divided into subgroups according to the presence of a history of glucocorticoid treatment, disease duration > 15 years and bowel resection. BEV was significantly lower in CD patients with these prevalent risk factors, with no differences in BMD at all sites. Additionally, TBS was reduced in patients with a history of glucocorticoid treatment. Despite a not severely pronounced bone loss in this population, impaired bone quality in CD patients with well-known risk factors for systemic bone loss was assessed by TX-Analyzer™.

4.
Shock ; 52(5): 497-505, 2019 11.
Article in English | MEDLINE | ID: mdl-30407369

ABSTRACT

BACKGROUND: Plasma-based resuscitation showed protective effects on the endothelial glycocalyx compared with crystalloid resuscitation. There is paucity of data regarding the effect of coagulation factor concentrates (CFC) on the glycocalyx in hemorrhagic shock (HS). We hypothesized that colloid-based resuscitation supplemented with CFCs offers a therapeutic value to treat endothelial damage following HS. METHODS: Eighty-four rats were subjected to pressure-controlled (mean arterial pressure (MAP) 30-35 mm Hg) and lab-guided (targeted cutoff: lactate >2.2. mmol/L and base deficit > 5.5 mmol/L) HS. Animals were resuscitated with fresh frozen plasma (FFP), human albumin (HA) or Ringer's lactate (RL) and RL or HA supplemented with fibrinogen concentrate (FC) or prothrombin complex concentrate (PCC). Serum epinephrine and the following markers of endothelial damage were assessed at baseline and at the end-of-observation (120 min after shock was terminated): syndecan-1, heparan sulfate, and soluble vascular endothelial growth factor receptor 1 (sVEGFR 1). RESULTS: Resuscitation with FFP had no effect on sVEGFR1 compared with crystalloid-based resuscitation (FFP: 19.3 ng/mL vs. RL: 15.9 ng/mL; RL+FC: 19.7 ng/mL; RL+PCC: 18.9 ng/mL; n.s.). At the end-of-observation, syndecan-1 was similar among all groups. Interestingly, HA+FC treated animals displayed the highest syndecan-1 concentration (12.07 ng/mL). Resuscitation with FFP restored heparan sulfate back to baseline (baseline: 36 ng/mL vs. end-of-observation: 36 ng/mL). CONCLUSION: The current study revealed that plasma-based resuscitation normalized circulating heparan sulfate but not syndecan-1. Co-administration of CFC had no further effect on glycocalyx shedding suggesting a lack of its therapeutic potential. LEVEL OF EVIDENCE: VExperimental in vivo study.


Subject(s)
Blood Coagulation Factors/pharmacology , Heparitin Sulfate/blood , Shock, Hemorrhagic , Syndecan-1/blood , Animals , Biomarkers/blood , Crystalloid Solutions/pharmacology , Disease Models, Animal , Humans , Male , Rats , Rats, Sprague-Dawley , Resuscitation , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/drug therapy
5.
Shock ; 50(4): 442-448, 2018 10.
Article in English | MEDLINE | ID: mdl-29112105

ABSTRACT

OBJECTIVES: We tested whether resuscitation supplemented with rat adipose-derived stem cells (ASCs) or secretome (conditioned media) of ASCs can ameliorate inflammation, cell/organ injury, and/or improve outcome after hemorrhagic traumatic shock (HTS). INTERVENTIONS: Rats were subjected to HTS and a resuscitation protocol that mimics prehospital restrictive reperfusion followed by an adequate reperfusion phase. Twenty minutes into the restrictive reperfusion, animals received an intravenous bolus of 2 × 10 cells (ASC group) or the secretome produced by 2 × 10 ASCs/24 h (ASC-Secretome group). Controls received the vehicle (Vehicle group). All rats were observed for 28-day survival. MEASUREMENTS AND MAIN RESULTS: HTS-induced inflammation represented by IL-6 was inhibited in the ASC (80%, P < 0.001) and in ASC-Secretome (59%, P < 0.01) group at 48 h compared with Vehicle group. At 24 h, HTS-induced liver injury reflected in plasma alanine aminotransferase was ameliorated by 36% (P < 0.001) in both the ASC and ASC-Secretome groups when compared with the Vehicle. There was no effect on kidney function and/or general cell injury markers. HTS induced a moderate 28-day mortality (18%) that was prevented (P = 0.08) in the ASC but not in the ASC-Secretome group (12%). CONCLUSIONS: Our data suggest that the ASC-secretome supplemented resuscitation following HTS, in the absence of the stem cells, exerts anti-inflammatory and liver protective effects. Given its ease of preparation, storage, availability, and application (in contrast to the stem cells) we believe that the cell-free secretome has a better therapeutic potential in the early phase of an acute hemorrhagic shock scenario.


Subject(s)
Adipose Tissue/cytology , Shock, Hemorrhagic/metabolism , Shock, Traumatic/metabolism , Animals , Culture Media, Conditioned/metabolism , Inflammation/metabolism , Male , Rats , Rats, Sprague-Dawley , Stem Cells/metabolism
6.
Chin J Traumatol ; 20(4): 207-211, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28684036

ABSTRACT

PURPOSE: It has been suggested that patients with traumatic insults are resuscitated into a state of an early systemic inflammatory response. We aimed to evaluate the influence of hemorrhagic shock and resuscitation (HSR) upon the inflammatory response capacity assessed by overall TNF-α secretion capacity of the host compared to its release from circulating leukocytes in peripheral circulation. METHODS: Rats (8/group) subjected to HS (MAP of 30-35 mmHg for 90 min followed by resuscitation over 50 min) were challenged with Lipopolysaccharide (LPS), 1 µg/kg intravenously at the end of resuscitation (HSR-LPS group) or 24 h later (HSR-LPS24 group). Control animals were injected with LPS without bleeding (LPS group). Plasma TNF-α was measured at 90 min after the LPS challenge. In addition, whole blood (WB) was obtained either from healthy controls (CON) immediately after resuscitation (HSR), or at 24 h post-shock (HSR 24). WB was incubated with LPS (100 ng/mL) for 2 h at 37 °C. TNF-α concentration and LPS binding capacity (LBC) was determined. RESULTS: Compared to LPS group, HSR followed by LPS challenge resulted in suppression of plasma TNF-α in HSR-LPS and HSR-LPS24 groups (1835 ± 478, 273 ± 77, 498 ± 200 pg/mL, respectively). Compared to CON the LPS-induced TNF-α release capacity of circulating leukocytes ex vivo was strongly declined both at the end of resuscitation (HSR) and 24 h later (HSR24) (1012 ± 259, 313 ± 154, 177 ± 63 ng TNF/mL, respectively). The LBC in WB was similar between CON and HSR and only moderately enhanced in HSR24 (57 ± 6, 56 ± 6, 71 ± 5 %, respectively). CONCLUSION: Our data suggest that the overall inflammatory response capacity is decreased immediately after HSR, persisting up to 24 h, and is independent of LBC.


Subject(s)
Resuscitation , Shock, Hemorrhagic/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Lipopolysaccharides/pharmacology , Male , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...