Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 195: 106661, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38052257

ABSTRACT

Temozolomide (TMZ) a DNA alkylating agent, is the standard-of-care for brain tumors, such as glioblastoma multiforme (GBM). Although the physicochemical and pharmacokinetic properties of TMZ, such as chemical stability and the ability to cross the blood-brain barrier (BBB), have been questioned in the past, the acquired chemoresistance has been the main limiting factor of long-term clinical use of TMZ. In the present study, an L-type amino acid transporter 1 (LAT1)-utilizing prodrug of TMZ (TMZ-AA, 6) was prepared and studied for its cellular accumulation and cytotoxic properties in human squamous cell carcinoma, UT-SCC-28 and UT-SCC-42B cells, and TMZ-sensitive human glioma, U-87MG cells that expressed functional LAT1. TMZ-AA 6 accumulated more effectively than TMZ itself into those cancer cells that expressed LAT1 (UT-SCC-42B). However, this did not correlate with decreased viability of treated cells. Indeed, TMZ-AA 6, similarly to TMZ itself, required adjuvant inhibitor(s) of DNA-repair systems, O6-methylguanine-DNA methyl transferase (MGMT) and base excision repair (BER), as well as active DNA mismatch repair (MMR), for maximal growth inhibition. The present study shows that improving the delivery of this widely-used methylating agent is not the main barrier to improved chemotherapy, although utilizing a specific transporter overexpressed at the BBB or glioma cells can have targeting advantages. To obtain a more effective anticancer prodrug, the compound design focus should shift to altering the major DNA alkylation site or inhibiting DNA repair systems.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Prodrugs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Dacarbazine/pharmacology , Drug Resistance, Neoplasm , DNA Repair , Glioblastoma/drug therapy , Glioma/drug therapy , Brain Neoplasms/drug therapy , DNA , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cell Line, Tumor
2.
Mol Pharm ; 20(6): 3127-3139, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37134022

ABSTRACT

Boron neutron capture therapy (BNCT) is a cancer therapy in which boron delivery agents play a crucial role. In theory, delivery agents with high tumor targeting capabilities can lead to selective eradication of tumor cells without causing harmful side effects. We have been working on a GLUT1-targeting strategy to BNCT for a number of years and found multiple promising hit compounds which outperform the clinically employed boron delivery agents in vitro. Herein, we continue our work in the field by further diversification of the carbohydrate scaffold in order to map the optimal stereochemistry of the carbohydrate core. In the sweet battle of the epimers, carborane-bearing d-galactose, d-mannose, and d-allose are synthesized and subjected to in vitro profiling studies─with earlier work on d-glucose serving as the reference. We find that all of the monosaccharide delivery agents display a significantly improved boron delivery capacity over the delivery agents approved for clinical use in vitro, thus providing a sound foundation for advancing toward in vivo preclinical assessment studies.


Subject(s)
Boranes , Boron Neutron Capture Therapy , Neoplasms , Humans , Monosaccharides , Boron , Neoplasms/radiotherapy , Boron Compounds/chemistry
3.
Mol Pharm ; 20(1): 206-218, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36394563

ABSTRACT

L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.


Subject(s)
Phenylalanine , Prodrugs , Drug Delivery Systems , Blood-Brain Barrier/metabolism , Amino Acids/chemistry , Prodrugs/chemistry , Biological Transport
4.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955600

ABSTRACT

Sesamol is a compound reported to have anti-melanogenesis and anti-melanoma actions. Sesamol, however, has low intracellular drug concentration and fast excretion, which can limit its benefits in the clinic. To overcome this drawback and increase intracellular delivery of sesamol into the target melanoma, research has focused on L-type amino acid transporter 1 (LAT1)-mediated prodrug delivery into melanoma cells. The sesamol prodrug was designed by conjugating sesamol with L-phenylalanine at the para position with a carbamate bond. LAT1 targeting was evaluated vis-à-vis a competitive [14C]-leucine uptake inhibition. The sesamol prodrug has a higher [14C]-leucine uptake inhibition than sesamol in human LAT1-transfected HEK293 cells. Moreover, the sesamol prodrug was taken up by LAT1-mediated transport into SK-MEL-2 cells more effectively than sesamol. The sesamol prodrug underwent complete hydrolysis, releasing the active sesamol at 72 h, which significantly exerted its cytotoxicity (IC50 of 29.3 µM) against SK-MEL-cells more than sesamol alone. Taken together, the strategy for LAT1-mediated prodrug delivery has utility for the selective uptake of sesamol, thereby increasing its intracellular concentration and antiproliferation activity, targeting melanoma SK-MEL-2 cells that overexpress the LAT1 protein. The sesamol prodrug thus warrants further evaluation in an in vivo model.


Subject(s)
Melanoma , Prodrugs , Amino Acids/metabolism , Benzodioxoles , Biological Transport , Carbamates/pharmacology , HEK293 Cells , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Leucine/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Phenols , Phenylalanine/metabolism , Prodrugs/chemistry , Prodrugs/pharmacology , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...