Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(28): 17271-17278, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35797725

ABSTRACT

Due to their unique property of possessing localized surface plasmon resonance (LSPR), metal nanoparticles (MNPs) have drastically impacted many applications. For instance, local field enhancement through LSPRs and plasmonic hot electron transfer are known to enhance the efficiency of MNP-based photoreactions. Here, we report on the ultrafast electron transfer from gold nanoparticles (Au-NPs) to methylene blue (MB) molecular adsorbate using femtosecond pump-probe and steady-state absorption and emission spectroscopy techniques. Although the energy band alignment of the interface allows both dipole-dipole Förster resonance energy transfer (FRET) and charge transfer, because the MB emission intensity at the Au-NPs/MB nanocomposite decreased by a factor of ∼3.6, the FRET process was ruled out. Selective excitation of LSPRs at the Au-NPs/MB nanocomposite sample in pump-probe experiments led to the formation of the MB ground-state depletion and a positive induced absorption at wavelengths shorter than ∼500 nm, which was attributed to the shoulder of the MB- anion absorption. Furthermore, despite the fact that the concentration of Au-NPs in the nanocomposite sample is the same as that in the Au-NPs solution, the initial intensity of the LSPR depletion signal was about six times weaker than that in the Au-NPs sample. These observations suggest that electron transfer from excited Au-NPs to MB adsorbates took place on a time-scale that is shorter than the ∼50 fs experimental temporal resolution.


Subject(s)
Gold , Metal Nanoparticles , Electrons , Gold/chemistry , Metal Nanoparticles/chemistry , Methylene Blue/chemistry , Surface Plasmon Resonance
2.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803656

ABSTRACT

Two-dimensional transition metal dichalcogenides (2D-TMDs) hold a great potential to platform future flexible optoelectronics. The beating hearts of these materials are their excitons known as XA and XB, which arise from transitions between spin-orbit split (SOS) levels in the conduction and valence bands at the K-point. The functionality of 2D-TMD-based devices is determined by the dynamics of these excitons. One of the most consequential channels of exciton decay on the device functionality is the defect-assisted recombination (DAR). Here, we employ steady-state absorption and emission spectroscopies, and pump density-dependent femtosecond transient absorption spectroscopy to report on the effect of DAR on the lifetime of excitons in monolayers of tungsten disulfide (2D-WS2) and diselenide (2D-WSe2). These pump-probe measurements suggested that while exciton decay dynamics in both monolayers are driven by DAR, in 2D-WS2, defect states near the XB exciton fill up before those near the XA exciton. However, in the 2D-WSe2 monolayer, the defect states fill up similarly. Understanding the contribution of DAR on the lifetime of excitons and the partition of this decay channel between XA and XB excitons may open new horizons for the incorporation of 2D-TMD materials in future optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...