Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 359: 121021, 2024 May.
Article in English | MEDLINE | ID: mdl-38678894

ABSTRACT

Tackling climate change remains a critical challenge for society. Achieving climate neutrality requires a massive expansion of renewable energies such as wind and photovoltaics (PV). Agriculture plays a key role in this context, especially as the expansion of ground-mounted PV systems often leads to land-use conflicts. Agrivoltaics (AV), which combines agricultural and electricity production, can be a solution, but the synergies are particularly dependent on local agronomic conditions. There is also a knowledge gap in how AV expansion impacts greenhouse gas (GHG) emissions at the landscape level and how it contributes to regional emission reduction targets. In this study, we analysed the economic and climate change mitigation impacts of AV expansion pathways in the German state Baden-Württemberg using an integrated land use model and life cycle assessment under the assumption of general rentability of electricity production by AV. We found that implementing AV on 1%-5% of the regions's arable and grassland area reduced the total agricultural gross margin by a maximum of approximately 0.5%. Concurrently, AV implementation reduced GHG emissions by about 1.2 million to 5.9 million metric tons of CO2 equivalent (Mt CO2-eq). Even if this reduction is almost exclusively accounted for in the energy sector, in absolute terms it amounts to more than the current GHG emissions from Baden-Württemberg's agricultural sector (about 4.4 Mt CO2-eq in 2021). In the 5% expansion scenario, almost 90% of the installations were installed on grassland, but this share dropped to 72% when considering landscape quality constraints. Although we found considerable regional disparity, our findings still suggest that AV is an essential component for regional emission reduction targets. These results are particularly relevant for policymakers in spatial planning, agricultural and energy policy.


Subject(s)
Agriculture , Climate Change , Greenhouse Gases , Models, Economic , Agriculture/methods , Greenhouse Gases/analysis , Farms
2.
Environ Manage ; 72(6): 1163-1188, 2023 12.
Article in English | MEDLINE | ID: mdl-37495685

ABSTRACT

This article defines the term valorization of biodiversity and ecosystem services (BES) measures, as distinguished from their valuation, and underpins it with an assessment of private valorization examples along the agri-food value chain. Valorization incentivizes measures for promoting BES, while valuation refers to its quantification. Valuation can be a step of valorization but is not indispensable. In scientific literature, the terms valorization and valuation are often used interchangeably. In addition, there is a lack of research on private options versus conventional, public policy options. Therefore, we searched for private valorization options primarily in public sources (gray literature and websites). This led to the identification of four clusters (markets for voluntary services, labeling, and certification, environmental management/CSR, and tradable permits and quotas). Based on these clusters the options were assessed from a legal and systems dynamics perspective. In addition, the viability of selected valorization options in different future scenarios was examined. The analysis revealed a wide range of private valorization options, which in contrast to public policy options that focus almost entirely on the production stage, are spread across the agri-food value chain. Their suitability differs under different future scenarios, legal and systems conditions.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Public Policy
3.
J Environ Manage ; 163: 146-54, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26311087

ABSTRACT

Overuse of nitrogen (N) fertilizer constitutes the major issue of current crop production in China, exerting a substantial effect on global warming through massive emission of greenhouse gas (GHG). Despite the ongoing effort, which includes the promotion of technologically sophisticated N management schemes, farmers' N rates maintain at excessive rates. Therefore the current study tests three simple and easily to apply N fertilizer recommendation strategies, which could be implemented on large scale through the existing agricultural advisory system of China, at comparatively low cost. Building on a detailed crop production dataset of 65 winter wheat (WW) and summer maize (SM) producing farm households of the North China Plain, scenario analysis is applied. The effects of the three N strategies under constant and changing yield levels on product carbon footprint (PCF) and gross margin (GM) are determined for the production condition of every individual farm household. The N fixed rate strategy realized the highest improvement potential in PCF and GM in WW; while the N coefficient strategy performed best in SM. The analysis furthermore revealed that improved N management has a significant positive effect on PCF, but only a marginal and insignificant effect on GM. On the other side, a potential 10% yield loss would have only a marginal effect on PCF, but a detrimental effect on farmers' income. With farmers currently applying excessive N rates as "cheap insurance" against potential N limitation, it will be of vital importance to avoid any yield reductions (caused by N limitation) and respective severe financial losses, when promoting and implementing advanced fertilization strategies. To achieve this, it is furthermore recommended to increase the price of fertilizer, improve the agricultural extensions system, and recognize farmers' fertilizer related decision-making processes as key research areas.


Subject(s)
Agriculture/methods , Fertilizers , Greenhouse Effect , Nitrogen , Triticum/growth & development , Zea mays/growth & development , Carbon Footprint , China , Crops, Agricultural/growth & development , Fertilizers/analysis , Global Warming , Nitrogen/analysis
4.
J Environ Manage ; 152: 11-8, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25602922

ABSTRACT

Allocation of greenhouse gas emissions (GHG) in Life Cycle Assessments (LCA) is challenging especially when multi-functionality of dairy farms, which do not only produce milk but also meat is considered. Moreover, some farms fulfill a wide range of additional services for society such as management of renewable natural resources as well as preservation of biodiversity and cultural landscapes. Due to the increasing degradation of ecosystems many industrialized as well as developing countries designed payment systems for environmental services. This study examines different allocation methods of GHG for a comparatively large convenience sample of 113 dairy farms located in grassland-based areas of southern Germany. Results are carbon footprints of 1.99 kg CO2eq/kg of fat and protein corrected milk (FPCM) on average if "no allocation" for coupled products is performed. "Physical allocation" results in 1.53 kg CO2eq/kg FPCM and "conventional economic allocation" in 1.66 kg CO2eq/kg FPCM on average if emissions are apportioned between milk and meat. Economic allocation which includes ecosystem services for society based on the farm net income as a new aspect in this study results in a carbon footprint of 1.5 kg CO2eq/kg FPCM on average. System expansion that puts greater emphasis on coupled beef production accounts for a carbon footprint of 0.68 kg CO2eq/kg FPCM on average. Intense milk production systems with higher milk yields show better results based on "no allocation", "physical allocation" and "conventional economic allocation". By contrast, economic allocation, which takes into account ecosystem services favors extensive systems, especially in less favored areas. This shows that carbon footprints of dairy farms should not be examined one-dimensionally based on the amount of milk and meat that is produced on the farm. Rather, a broader perspective is necessary that takes into account the multi-functionality of dairy farms especially in countries where a wide range of ecosystem services is provided.


Subject(s)
Air Pollutants/analysis , Carbon Footprint , Conservation of Natural Resources/methods , Dairying/methods , Gases/analysis , Greenhouse Effect , Animals , Conservation of Natural Resources/economics , Ecosystem , Germany , Milk/economics
5.
J Dairy Sci ; 97(12): 7564-74, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25468708

ABSTRACT

The reduction of product-related greenhouse gas (GHG) emissions in milk production appears to be necessary. The reduction of emissions on an individual farm might be highly accepted by farm owners if it were accompanied by an increase in profitability. Using life cycle assessments to determine the product carbon footprints (PCF) and farm-level evaluations to record profitability, we explored opportunities for optimization based on analysis of 81 organic and conventional pasture-based dairy farms in southern Germany. The objective of the present study was to detect common determining factors for low PCF and high management incomes (MI) to achieve GHG reductions at the lowest possible operational cost. In our sample, organic farms, which performed economically better than conventional farms, produced PCF that were significantly higher than those produced by conventional farms [1.61 ± 0.29 vs. 1.45 ± 0.28 kg of CO2 equivalents (CO2eq) per kg of milk; means ± SD)]. A multiple linear regression analysis of the sample demonstrated that low feed demand per kilogram of milk, high grassland yield, and low forage area requirements per cow are the main factors that decrease PCF. These factors are also useful for improving a farm's profitability in principle. For organic farms, a reduction of feed demand of 100 g/kg of milk resulted in a PCF reduction of 105 g of CO2eq/kg of milk and an increase in MI of approximately 2.1 euro cents (c)/kg of milk. For conventional farms, a decrease of feed demand of 100 g/kg of milk corresponded to a reduction in PCF of 117 g of CO2eq/kg of milk and an increase in MI of approximately 3.1 c/kg of milk. Accordingly, farmers could achieve higher profits while reducing GHG emissions. Improved education and training of farmers and consultants regarding GHG mitigation and farm profitability appear to be the best methods of improving efficiency under traditional and organic farming practices.


Subject(s)
Animal Feed/economics , Carbon Footprint/economics , Cattle/physiology , Dairying/methods , Animal Husbandry/economics , Animal Husbandry/methods , Animals , Carbon Dioxide/economics , Carbon Dioxide/metabolism , Dairying/economics , Eating , Female , Germany , Greenhouse Effect/economics , Milk/metabolism , Organic Agriculture/economics , Organic Agriculture/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...