Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(6): e98694, 2014.
Article in English | MEDLINE | ID: mdl-24896822

ABSTRACT

Accurate estimates of species richness are essential to macroecological and macroevolutionary research, as well as to the effective management and conservation of biodiversity. The resolution of taxonomic relationships is therefore of vital importance. While molecular methods have revolutionised taxonomy, contemporary species delimitation requires an integrative, multi-disciplinary approach. Despite boasting a remarkably high level of endemism, the avifauna of the Sulawesi region of Indonesia remains poorly studied. Previous studies of avian diversity in Sulawesi have focussed predominantly on phenotypic characteristics, thus potentially overlooking any genetically distinct lineages. Grey-sided Flowerpecker Dicaeum celebicum populations from the Wakatobi archipelago were originally described as a separate species from those on nearby mainland Sulawesi. However, for reasons that remain unknown, the Wakatobi populations were reclassified as a subspecies of the mainland form. Combining estimates of genetic divergence with phylogenetic and morphological analyses, we reassessed the status of Wakatobi populations. Our results describe the Wakatobi populations as a separate species to those on mainland Sulawesi; reproductively isolated, genetically and morphologically distinct. We therefore recommend the reclassification of these populations to their original status of Dicaeum kuehni and propose the vernacular name 'Wakatobi Flowerpecker'. In consideration of our findings and the lack of integrative ornithological research within the Sulawesi region, we believe species richness and avian endemism within the region are underestimated.


Subject(s)
Birds/classification , Birds/genetics , Phenotype , Phylogeny , Animals , Biodiversity , DNA, Mitochondrial/genetics , Female , Geography , Haplotypes , Indonesia , Male
2.
J Exp Bot ; 53(367): 251-63, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11807129

ABSTRACT

Early signals potentially regulating leaf growth and stomatal aperture in field-grown maize (Zea mays L.) subjected to drought were investigated. Plants grown in a field lysimeter on two soil types were subjected to progressive drought during vegetative growth. Leaf ABA content, water status, extension rate, conductance, photosynthesis, nitrogen content, and xylem sap composition were measured daily. Maize responded similarly to progressive drought on both soil types. Effects on loam were less pronounced than on sand. Relative to fully-watered controls, xylem pH increased by about 0.2 units one day after withholding irrigation (DAWI) and conductivity decreased by about 0.25 mS cm(-1) 1-3 DAWI. Xylem nitrate, ammonium, and phosphate concentrations decreased by about 50% at 1-5 DAWI and potassium concentration decreased by about 50% at 7-8 DAWI. Xylem ABA concentration consistently increased by 45-70 pmol ml(-1) at 7 DAWI. Leaf extension rate decreased 5 DAWI, after the changes in xylem chemical composition had occurred. Leaf nitrogen significantly decreased 8-16 DAWI in droughted plants. Midday leaf water potential and photosynthesis were significantly decreased in droughted plants late in the drying period. Xylem nitrate concentration was the only ionic xylem sap component significantly correlated to increasing soil moisture deficit and decreasing leaf nitrogen concentration. Predawn leaf ABA content in droughted plants increased by 100-200 ng g(-1) dry weight at 7 DAWI coinciding with a decrease in stomatal conductance before any significant decrease in midday leaf water potential was observed. Based on the observed sequence, a chain of signal events is suggested eventually leading to stomatal closure and leaf surface reduction through interactive effects of reduced nitrogen supply and plant growth regulators under drought.


Subject(s)
Abscisic Acid/metabolism , Ions/metabolism , Water/metabolism , Zea mays/metabolism , Anions/chemistry , Anions/metabolism , Biological Transport , Cations/chemistry , Cations/metabolism , Cell Communication/physiology , Electric Conductivity , Hydrogen-Ion Concentration , Ions/chemistry , Nitrates/chemistry , Nitrates/metabolism , Osmotic Pressure , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/physiology , Signal Transduction , Soil/analysis , Water/pharmacology , Zea mays/drug effects , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...