Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Pharm Res ; 19(1): 218-230, 2020.
Article in English | MEDLINE | ID: mdl-32922482

ABSTRACT

Otostegia fruticosa is traditionally used to treat tonsillitis, stomach ache, asthma, arthritis, and febrile illness in different parts of Ethiopia and other countries. In this experiment 70% ethanolic crude extract and fractions of the leaf of Otostegia fruticosa (Forssk.) Schweinf. ex Penzig were evaluated for their in-vivo anti-inflammatory and analgesic activities and in-vitro hyaluronidase inhibition properties at different concentrations. Tail immersion, acetic acid induced writhing and carrageenan-induced paw edema model were used to assess the in-vivo analgesic and anti-inflammatory activities, respectively. Swiss albino mice of either sex were randomly divided into five groups of six mice per group and for evaluation of the fractions randomly divided into six groups of six mice per group. The test groups were treated with hydroalcoholic extract of Otostegia fruticosa (O. fruticosa) at doses of 100, 200, and 400 mg/kg. The positive control groups received either pethidine 5 mg/kg or aspirin at 100 mg/kg or 150 mg/kg. The negative control groups were orally given sunflower oil. All the fractions were administered at the dose of 400 mg/kg. In all models, the higher dose (400 mg/kg) of the crude extract and chloroform fraction showed a significant central and peripheral analgesic and anti-inflammatory activities with comparable effects to standards used. The hyaluronidase inhibition assay result showed that the test samples displayed concentration-dependent inhibitory activities. These findings indicate that 70% ethanol extract and organic solvent fractions of O. fruticosa leaves have potential analgesic, anti-inflammatory, and enzyme inhibitory activities.

2.
Saudi Pharm J ; 28(3): 281-289, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32194329

ABSTRACT

Otostegia fruticosa, a plant belonging to the family Lamiaceae, is endemic to Ethiopia. In Ethiopian traditional medicine, O. fruticosa has been used for the treatment of several respiratory-related disorders. The present study was designed to evaluate the bronchodilatory and antimicrobial activities of O. fruticosa leaves crude extract (Of.Cr). Ex-vivo experiments were conducted on guinea-pig trachea provided with physiological oxygenated buffer solution using emkaBath setup. The crude extract was analyzed by gas chromatography-mass spectrometry. Of.Cr, showed the presence of terpenes, fragrance components, saponins, and higher fatty acids. Of.Cr when tested on contracted tracheal chains with carbamylcholine (CCh, 1 µM) and high K+ (80 mM) produced relaxation by showing higher potency against CCh with incomplete inhibition of high K+. Dicyclomine, used as a positive control, also showed selectively higher potency to inhibit CCh when compared with its effect against K+. In the anticholinergic curves, Of.Cr at 1 mg/mL deflected CCh-induced concentration-response curves (CRCs) competitively to the right like dicyclomine (0.03 µM) and atropine whereas a higher dose of Of.Cr (3 mg/mL) produced a non-parallel shift in the CCh curves like a higher dose of dicyclomine (0.1 µM). In the calcium channel inhibitory assay, Of.Cr at 3 & 5 mg/mL, deflected CRCs of Ca++ to the right like verapamil, used as positive control. Of.Cr, at concentrations (1-3 mg/mL) increases cAMP levels in isolated tracheal homogenates, similar to positive control phosphodiesterase inhibitor (papaverine). When tested for antibacterial activity against standard and clinical strains, Of.Cr was found more active (MIC 475 µg/ml) against S. aureus (NCTC 6571), while the maximum inhibition (MIC 625 µg/ml) was observed by the extract when tested against MRSA. These results determine the mechanistic pathways of the observed bronchodilatory effect of Otostegia fruticosa with a combination of anticholinergic and dual inhibition of phosphodiesterase and voltage-gated Ca++ channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...