Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013849

ABSTRACT

Radiative cooling can make the selective emitter cool below ambient temperature without any external energy. Recent advances in photonic crystal and metamaterial technology made a high-efficiency selective emitter achievable by precisely controlling the emitter's Infrared emission spectrum. However, the high cost of the photonic crystals and meta-materials limit their application. Herein, an efficient bilayer selective emitter is prepared based on the molecular vibrations of functional nanoparticles. By optimizing the volume fraction of the functional nanoparticles, the bilayer selective emitter can theoretically cool 36.7 °C and 25.5 °C below the ambient temperature in the nighttime and daytime, respectively. Such an efficient cooling performance is comparable with the published photonic crystal and metamaterial selective emitters. The rooftop measurements show that the bilayer selective emitter is effective in the ambient air even under direct sunlight. The relatively low cost and excellent cooling performance enable the bilayer selective emitter to have great potential for a practical purpose.

2.
J Nanosci Nanotechnol ; 10(11): 7428-31, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21137951

ABSTRACT

A convenient fabrication technology for large-area, highly-ordered nanoelectrode arrays on silicon substrate has been described here, using porous anodic alumina (PAA) as a template. The ultrathin PAA membranes were anodic oxidized utilizing a two-step anodization method, from Al film evaporated on substrate. The purposes for the use of two-step anodization were, first, improving the regularity of the porous structures, and second reducing the thickness of the membranes to 100-200 nm we desired. Then the nanoelectrode arrays were obtained by electroless depositing Ni-W alloy into the through pores of PAA membranes, making the alloy isolated by the insulating pore walls and contacting with the silicon substrates at the bottoms of pores. The Ni-W alloy was also electroless deposited at the back surface of silicon to form back electrode. Then ohmic contact properties between silicon and Ni-W alloy were investigated after rapid thermal annealing. Scanning electron microscopy (SEM) observations showed the structure characteristics, and the influence factors of fabrication effect were discussed. The current-voltage (I-V) curves revealed the contact properties. After annealing in N2 at 700 degrees C, good linear property was shown with contact resistance of 33 omega, which confirmed ohmic contacts between silicon and electrodes. These results presented significant application potential of this technology in nanosize current-injection devices in optoelectronics, microelectronics and bio-medical fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...