Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36982927

ABSTRACT

The enzyme encoded by slr1022 gene from Synechocystis sp. PCC6803 was reported to function as N-acetylornithine aminotransferase, γ-aminobutyric acid aminotransferase, and ornithine aminotransferase, which played important roles in multiple metabolic pathways. Among these functions, N-acetylornithine aminotransferase catalyzes the reversible conversion of N-acetylornithine to N-acetylglutamate-5-semialdehyde with PLP as cofactor, which is a key step in the arginine biosynthesis pathway. However, the investigation of the detailed kinetic characteristics and catalytic mechanism of Slr1022 has not been carried out yet. In this study, the exploration of kinetics of recombinant Slr1022 illustrated that Slr1022 mainly functioned as N-acetylornithine aminotransferase with low substrate specificity to γ-aminobutyric acid and ornithine. Kinetic assay of Slr1022 variants and the model structure of Slr1022 with N-acetylornithine-PLP complex revealed that Lys280 and Asp251 residues were the key amino acids of Slr1022. The respective mutation of the above two residues to Ala resulted in the activity depletion of Slr1022. Meanwhile, Glu223 residue was involved in substrate binding and it served as a switch between the two half reactions. Other residues such as Thr308, Gln254, Tyr39, Arg163, and Arg402 implicated a substrate recognition and catalytic process of the reaction. The results of this study further enriched the understanding of the catalytic kinetics and mechanism of N-acetylornithine aminotransferase, especially from cyanobacteria.


Subject(s)
Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Transaminases/metabolism , Ornithine-Oxo-Acid Transaminase , gamma-Aminobutyric Acid
2.
PLoS One ; 15(9): e0239372, 2020.
Article in English | MEDLINE | ID: mdl-32966327

ABSTRACT

As a ubiquitous enzyme, succinic semialdehyde dehydrogenase contributes significantly in many pathways including the tricarboxylic acid cycle and other metabolic processes such as detoxifying the accumulated succinic semialdehyde and surviving in nutrient-limiting conditions. Here the cce4228 gene encoding succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142 was cloned and the homogenous recombinant cce4228 protein was obtained by Ni-NTA affinity chromatography. Biochemical characterization revealed that cce4228 protein displayed optimal activity at presence of metal ions in basic condition. Although the binding affinity of cce4228 protein with NAD+ was about 50-fold lower than that of cce4228 with NADP+, the catalytic efficiency of cce4228 protein towards succinic semialdehyde with saturated concentration of NADP+ is same as that with saturated concentration of NAD+ as its cofactors. Meanwhile, the catalytic activity of cce4228 was competitively inhibited by succinic semialdehyde substrate. Kinetic and structural analysis demonstrated that the conserved Cys262 and Glu228 residues were crucial for the catalytic activity of cce4228 protein and the Ser157 and Lys154 residues were determinants of cofactor preference.


Subject(s)
Cyanothece/enzymology , Succinate-Semialdehyde Dehydrogenase/chemistry , Succinate-Semialdehyde Dehydrogenase/metabolism , Amino Acid Sequence , Kinetics , Models, Molecular , Mutation , NAD/metabolism , NADP/metabolism , Protein Conformation , Substrate Specificity , Succinate-Semialdehyde Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...