Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1280970, 2023.
Article in English | MEDLINE | ID: mdl-37877082

ABSTRACT

Anthocyanin is the main component of pigment in red-fleshed kiwifruit. 'Jinhongguan' is a new cultivar of Actinidia arguta with red peel and flesh after harvest. However, the specific types of anthocyanin in the 'Jinhongguan' fruit and its biosynthesis pathways remain largely unknown. Here, the total anthocyanin content in the fruit color conversion process was determined. The results showed that total anthocyanin content increased with the deepening color of the peel and flesh. To identify the genes related to anthocyanin biosynthesis and the types of anthocyanins in the 'Jinhongguan' fruit, a combined analysis of transcriptome and anthocyanin-targeted metabolome was carried out. A total of 5751 common differentially expressed genes (DEGs) at different stages of peel and flesh were identified, of which 2767 were common up-DEGs and 2976 were common down-DEGs. KEGG and GO enrichment analyses showed that the common up-DEGs were significantly enriched in anthocyanin synthesis-related pathways, suggesting some up-DEGs are involved in anthocyanin biosynthesis. In total, 29 metabolites were detected in the flesh by anthocyanin-targeted metabolome. Among these, nine were differential accumulation metabolites (DAMs) in comparison to red flesh vs green flesh. Six DAMs were up-regulated, with five of them were cyanidins. The content of cyanidin-3-O-galactoside was much higher than that of other DAMs, making it the main pigment in 'Jinhongguan'. Moreover, a total of 36 anthocyanin synthesis-related structural genes, 27 MYB transcription factors (TFs), 37 bHLH TFs and 9 WDR TFs were screened from the common DEGs. Correlation analysis of transcriptome and metabolome revealed that 9 structural genes, 6 MYB TFs, 6 bHLH TFs and 1 WDR TF were significantly associated with cyanidin-3-O-galactoside. Further, qRT-PCR analysis demonstrated that structural genes (AaPAL3, Aa4CL3, AaCHS2/3/8/9/11, AaDFR1/2, AaANR1, UFGT3a and UFGT6b) and TFs (MYB108, bHLH30, bHLH94-1 and WD43) play important roles in cyanidin biosynthesis. Overall, this study identified cyanidin-3-O-galactoside as the main anthocyanin type and revealed key candidate genes of red coloration of post-harvest fruit in Actinidia arguta. These findings provided new insights into the color formation mechanism of post-harvest fruit and offered a theoretical basis for color regulation in kiwifruit.

2.
Proc Natl Acad Sci U S A ; 120(27): e2301884120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37368927

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.


Subject(s)
Medicago truncatula , Mycorrhizae , Symbiosis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Mycorrhizae/physiology , Hyphae/metabolism , Chitin/metabolism , Medicago truncatula/microbiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
Front Genet ; 13: 1043178, 2022.
Article in English | MEDLINE | ID: mdl-36468015

ABSTRACT

Kiwifruit (Actinidia chinensis Planch.) is a functionally dioecious plant, which displays diverse morphology in male and female flowers. MADS-box is an ancient and huge gene family that plays a key role in plant floral organ differentiation. In this study, we have identified 89 MADS-box genes from A. chinensis Red 5 genome. These genes are distributed on 26 chromosomes and are classified into type I (21 genes) and type II (68 genes). Overall, type II AcMADS-box genes have more complex structures than type I with more exons, protein domains, and motifs, indicating that type II genes may have more diverse functions. Gene duplication analysis showed that most collinearity occurred in type II AcMADS-box genes, which was consistent with a large number of type II genes. Analysis of cis-acting elements in promoters showed that AcMADS-box genes are mainly associated with light and phytohormone responsiveness. The expression profile of AcMADS-box genes in different tissues showed that most genes were highly expressed in flowers. Further, the qRT-PCR analysis of the floral organ ABCDE model-related genes in male and female flowers revealed that AcMADS4, AcMADS56, and AcMADS70 were significantly expressed in female flowers. It indicated that those genes may play an important role in the sex differentiation of kiwifruit. This work provided a comprehensive analysis of the AcMADS-box genes and may help facilitate our understanding of the sex differentiation regulatory mechanism in kiwifruit.

4.
BMC Genomics ; 23(1): 185, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35249536

ABSTRACT

BACKGROUND: Citrus is one of the most important fresh fruit crops worldwide. Juice sac granulation is a physiological disorder, which leads to a reduction in soluble solid concentration, total sugar, and titratable acidity of citrus fruits. Pectin methylesterase (PME) catalyzes the de-methylesterification of homogalacturonans and plays crucial roles in cell wall modification during plant development and fruit ripening. Although PME family has been well investigated in various model plants, little is known regarding the evolutionary property and biological function of PME family genes in citrus. RESULTS: In this study, 53 non-redundant PME genes were identified from Citrus sinensis genome, and these PME genes were divided into four clades based on the phylogenetic relationship. Subsequently, bioinformatics analyses of gene structure, conserved domain, chromosome localization, gene duplication, and collinearity were performed on CsPME genes, providing important clues for further research on the functions of CsPME genes. The expression profiles of CsPME genes in response to juice sac granulation and low-temperature stress revealed that CsPME genes were involved in the low temperature-induced juice sac granulation in navel orange fruits. Subcellular localization analysis suggested that CsPME genes were localized on the apoplast, endoplasmic reticulum, plasma membrane, and vacuole membrane. Moreover, yeast one-hybrid screening and dual luciferase activity assay revealed that the transcription factor CsRVE1 directly bound to the promoter of CsPME3 and activated its activity. CONCLUSION: In summary, this study conducts a comprehensive analysis of the PME gene family in citrus, and provides a novel insight into the biological functions and regulation patterns of CsPME genes during juice sac granulation of citrus.


Subject(s)
Citrus sinensis , Citrus , Carboxylic Ester Hydrolases/metabolism , Citrus/genetics , Citrus/metabolism , Citrus sinensis/genetics , Citrus sinensis/metabolism , Fruit/genetics , Fruit/metabolism , Phylogeny
5.
Plants (Basel) ; 9(7)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708770

ABSTRACT

Citrus is vegetatively propagated by grafting for commercial production, and most rootstock cultivars of citrus have scarce root hairs, thus heavily relying on mutualistic symbiosis with arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community composition, and its differences under different citrus scion/rootstock genotypes, were largely unknown. In this study, we investigated the citrus root-associated AMF diversity and richness, and assessed the influence of citrus scion/rootstock genotypes on the AMF community composition in a controlled condition, in order to exclude interferences from environmental factors and agricultural practices. As a result, a total of 613,408 Glomeromycota tags were detected in the citrus roots, and 46 AMF species were annotated against the MAARJAM database. Of these, 39 species belonged to Glomus, indicating a dominant role of the Glomus AMF in the symbiosis with citrus. PCoA analysis indicated that the AMF community's composition was significantly impacted by both citrus scion and rootstock genotypes, but total samples were clustered according to rootstock genotype rather than scion genotype. In addition, AMF α diversity was significantly affected merely by rootstock genotype. Thus, rootstock genotype might exert a greater impact on the AMF community than scion genotype. Taken together, this study provides a comprehensive insight into the AMF community in juvenile citrus plants, and reveals the important effects of citrus genotype on AMF community composition.

6.
Front Microbiol ; 6: 1372, 2015.
Article in English | MEDLINE | ID: mdl-26648932

ABSTRACT

Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure. Over 7,40,000 effective sequences were obtained from 77 citrus root samples. These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots. The citrus AMF community structure is significantly affected by habitats and host genotypes. Interestingly, our data suggests that the genotype of the scion exerts a greater impact on the AMF community structure than that of the rootstock where the physical root-AMF association occurs. This study not only provides a comprehensive assessment for the community composition of the AMF in citrus roots under different conditions, but also sheds novel insights into how the AMF community might be indirectly influenced by the spatially separated yet metabolically connected partner-the scion-of the grafted citrus tree.

7.
Mol Genet Genomics ; 290(5): 1639-57, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25754997

ABSTRACT

Corky split vein can develop under long-term boron deficient conditions in Citrus sinensis L. Osbeck cv. Newhall. This symptom only occurs in the upper rather than the lower epidermis of old leaves. Our previous study demonstrated that vascular hypertrophy was involved in the symptoms, and the 3rd developmental stage of corky split vein (BD3) was the critical stage for phenotype formation. Here, we performed an intensive study on the BD3 vein and its control sample (CK3 vein). A lignin test demonstrated that the lignin content in BD3 vein was approximately 1.7 times more than the CK3 vein. Anatomical investigation of the corky split vein indicated that the upper epidermis was destroyed by overgrowing vascular cells, and the increased lignin may contribute to vascular cell differentiation and wounding-induced lignification. In a subsequent small RNA sequencing of the BD3 and CK3 veins, 99 known miRNAs and 22 novel miRNAs were identified. Comparative profiling of these miRNAs demonstrated that the 57 known miRNAs and all novel miRNAs exhibited significant expression differences between the two small RNAs libraries of the BD3 and CK3 veins. Associated with our corresponding digital gene expression data, we propose that the decreased expression of two miRNAs, csi-miR156b and csi-miR164, which leads to the up-regulation of their target genes, SPLs (csi-miR156b-targeted) and CUC2 (csi-miR164-targeted), may promote vascular cell division and orderless stage transition in old leaves.


Subject(s)
Boron/deficiency , Citrus sinensis/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Transcriptome , Citrus sinensis/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...