Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(64): 37355-37364, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-35542285

ABSTRACT

A reliable in situ self-generating template strategy has been developed for the synthesis of flowerlike carbon nanosheets by hydrothermal carbonization in the presence of both silica and zinc acetate using glucose as the carbon source. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), Raman spectroscopy, nitrogen sorption isotherm measurement (BET) and element analysis revealed the morphology, crystal phase structure, porosity and chemical composition. The formation of the zinc silicate nanosheet template was due to the hydrolysis of amorphous silica and self-assembly under hydrothermal conditions. The resulting flowerlike carbon nanosheets proved to be an excellent palladium catalyst support.

2.
Molecules ; 20(12): 21178-92, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26633320

ABSTRACT

A highly porous metal-organic framework (Cu-TDPAT), constructed from a paddle-wheel type dinuclear copper cluster and 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H6TDPAT), has been tested in Ullmann and Goldberg type C-N coupling reactions of a wide range of primary and secondary amines with halobenzenes, affording the corresponding N-arylation compounds in moderate to excellent yields. The Cu-TDPAT catalyst could be easily separated from the reaction mixtures by simple filtration, and could be reused at least five times without any significant degradation in catalytic activity.


Subject(s)
Amines/chemistry , Copper/chemistry , Organometallic Compounds/chemistry , Triazines/chemistry , Catalysis , Molecular Structure
3.
J Environ Sci (China) ; 25(10): 2138-49, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24494502

ABSTRACT

Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-deltaS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-deltaS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi5+, Bi3+, V5+, V3+, Fe3+, and Fe2+ species in y wt.% FeOx/BiVO4-deltaS0.08. The 1.40 wt.% FeOx/BiVO4-deltaS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-deltaS0.08.


Subject(s)
Bismuth/chemistry , Ferric Compounds/chemistry , Light , Methylene Blue/chemistry , Photochemical Processes , Vanadates/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Microscopy, Electron, Scanning
4.
Environ Sci Technol ; 46(7): 4034-41, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22413904

ABSTRACT

Nanosized rod-like, wire-like, and tubular α-MnO(2) and flower-like spherical Mn(2)O(3) have been prepared via the hydrothermal method and the CCl(4) solution method, respectively. The physicochemical properties of the materials were characterized using numerous analytical techniques. The catalytic activities of the catalysts were evaluated for toluene oxidation. It is shown that α-MnO(2) nanorods, nanowires, and nanotubes with a surface area of 45-83 m(2)/g were tetragonal in crystal structure, whereas flower-like spherical Mn(2)O(3) with a surface area of 162 m(2)/g was of cubic crystal structure. There were the presence of surface Mn ions in multiple oxidation states (e.g., Mn(3+), Mn(4+), or even Mn(2+)) and the formation of surface oxygen vacancies. The oxygen adspecies concentration and low-temperature reducibility decreased in the order of rod-like α-MnO(2) > tube-like α-MnO(2) > flower-like Mn(2)O(3) > wire-like α-MnO(2), in good agreement with the sequence of the catalytic performance of these samples. The best-performing rod-like α-MnO(2) catalyst could effectively catalyze the total oxidation of toluene at lower temperatures (T(50%) = 210 °C and T(90%) = 225 °C at space velocity = 20,000 mL/(g h)). It is concluded that the excellent catalytic performance of α-MnO(2) nanorods might be associated with the high oxygen adspecies concentration and good low-temperature reducibility. We are sure that such one-dimensional well-defined morphological manganese oxides are promising materials for the catalytic elimination of air pollutants.


Subject(s)
Manganese Compounds/chemistry , Nanotubes/chemistry , Nanowires/chemistry , Oxides/chemistry , Toluene/isolation & purification , Catalysis , Crystallization , Hydrogen/chemistry , Nanotubes/ultrastructure , Nanowires/ultrastructure , Oxidation-Reduction , Oxygen/chemistry , Photoelectron Spectroscopy , Surface Properties , Temperature , X-Ray Diffraction
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 68(5): 1164-9, 2007 Dec 31.
Article in English | MEDLINE | ID: mdl-17482869

ABSTRACT

The interaction of a cationic water-soluble porphyrin, 5,10,15,20-tetrakis [4-(3-pyridiniumpropoxy)phenyl]porphyrin tetrakisbromide (TPPOC3Py), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution has been studied by means of UV-vis, (1)H NMR, fluorescence, circular dichroism (CD) spectra and dynamic laser light scattering (DLLS), and it reveals that TPPOC3Py forms porphyrin-surfactant complexes (aggregates), including ordered structures J- and H-aggregates, induced by association with surfactant monomers below the SDS critical micelle concentration (cmc), and forms micellized monomer upon the cmc, respectively. The position of TPPOC3Py in the micelle is determined, which is not in the micelle core instead of intercalated among the SDS chains, most likely with the pyridinium group extending into the polar headgroup region of the micelle.


Subject(s)
Porphyrins/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Circular Dichroism , Light , Magnetic Resonance Spectroscopy , Protons , Scattering, Radiation , Sodium Dodecyl Sulfate/chemistry , Solubility , Solutions , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 66(4-5): 1189-93, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17251055

ABSTRACT

The interaction of a cationic water-soluble porphyrin, 5,10,15,20-tetrakis[4-(3-pyridiniumpropoxy)phenyl]prophyrin tetrakisbromide (TPPOC3Py), with beta-CD and HP-beta-CD in aqueous solution has been studied by UV-vis, 1H NMR, 2D-NOESY and MALDI-TOF MS, and it reveals that a stable 1:1 inclusion complex between TPPOC3Py and HP-beta-CD or beta-CD has formed, in which one of the meso substituents of porphyrin ring has deeply penetrated through the cavity of HP-beta-CD from secondary face. The inclusion constants of the complexes of TPPOC3Py-beta-CD and TPPOC3Py-HP-beta-CD are (1.6+/-0.2)x10(3) M-1 and (8.9+/-0.4)x10(4) M-1, respectively.


Subject(s)
Porphyrins/chemistry , Pyridinium Compounds/chemistry , beta-Cyclodextrins/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Molecular Conformation , Solutions , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...