Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 8(17): e2100795, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34219411

ABSTRACT

Next-generation inter-chip communication requires ultrafast ultra-compact interconnects. Designer plasmonics offers a possible route towards this goal. Further development of the plasmonic technique to circuit applications requires the direct amplification of plasmonic signals on a compact platform. However, significant signal distortions and limited operational speeds prevent the application of traditional MOS-based amplifiers to plasmonics. Up to day, the amplification of surface plasmons without phase distortion has remained a scientific challenge. In this work, the concept of parametric amplification (PA) is transplanted to the plasmonics and is realized experimentally an ultrathin reconfigurable PA using a spoof surface plasmon polariton (SSPP) waveguide integrated with tunable and nonlinear varactors. The measured parametric gain in the experiment can reach up to 9.14 dB within a short nonlinear propagation length, for example, six SSPP wavelengths, in excellent agreement with the theoretical prediction. By tuning the bias voltage of varactors, the phase-matching condition can be precisely controlled over a broad frequency band, enabling the authors to realize the multi-frequency PA of plasmonic signals. Measured phase responses confirm that the plasmonic parametric amplifier can significantly suppress the signal distortions as compared with the traditional MOS-based amplifier, which is a property highly desired for ultrafast wireless communication systems and integrated circuits.

2.
Light Sci Appl ; 9(1): 198, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33318469

ABSTRACT

Facilitated by ultrafast dynamic modulations, spatiotemporal metasurfaces have been identified as a pivotal platform for manipulating electromagnetic waves and creating exotic physical phenomena, such as dispersion cancellation, Lorentz reciprocity breakage, and Doppler illusions. Motivated by emerging information-oriented technologies, we hereby probe the information transition mechanisms induced by spatiotemporal variations and present a general model to characterize the information processing capabilities of the spatiotemporal metasurface. Group theory and abstract number theory are adopted through this investigation, by which the group extension and independent controls of multiple harmonics are proposed and demonstrated as two major tools for information transitions from the spatiotemporal domain to the spectra-wavevector domain. By incorporating Shannon's entropy theory into the proposed model, we further discover the corresponding information transition efficiencies and the upper bound of the channel capacity of the spatiotemporal metasurface. The results of harmonic information transitions show great potential in achieving high-capacity versatile information processing systems with spatiotemporal metasurfaces.

3.
Adv Sci (Weinh) ; 7(20): 2001648, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33101865

ABSTRACT

With the development of science and technology, the way to represent information becomes more powerful and diversified. Recent research on digital coding metasurfaces has built an alternative bridge between wave-behaviors and information science. Different from the logic information in traditional circuits, the digital bit in coding metasurfaces is based on wave-structure interaction, which is capable of exploiting multiple degrees of freedom (DoFs). However, to what extent the digital coding metasurface can expand the information representation has not been discussed. In this work, it is shown that classical metasurfaces have the ability to mimic qubit and quantum information. An approach for simulating a two-level spin system with meta-atoms is proposed, from which the superposition for two optical spin states is constructed. It is further proposed that using geometric-phase elements with nonseparable coding states can induce the classical entanglement between polarization and spatial modes, and give the condition to achieve the maximal entanglement. This study expands the information representing range of coding metasurfaces and provides an ultrathin platform to mimic quantum information.

4.
Natl Sci Rev ; 7(3): 561-571, 2020 Mar.
Article in English | MEDLINE | ID: mdl-34692075

ABSTRACT

We propose a theory to characterize the information and information processing abilities of metasurfaces, and demonstrate the relation between the information of the metasurface and its radiation pattern in the far-field region. By incorporating a general aperture model with uncertainty relation in L 2-space, we propose a theory to predict the upper bound of information contained in the radiation pattern of a metasurface, and reveal the theoretical upper limit of orthogonal radiation states. The proposed theory also provides guidance for inverse design of the metasurface with respect to given functionalities. Through investigation of the information of disordered-phase modulated metasurfaces, we find the information invariance (1-γ, where γ is Euler's constant) of chaotic radiation patterns. That is to say, the information of the disordered-phase modulated radiation patterns is always equal to 1-γ, regardless of variations in size, the number of elements and the phase pattern of metasurface. This value might be the lower bound of radiation-pattern information of the metasurface, which can provide a theoretical limit for information modulation applications, including computational imaging, stealth technologies and wireless communications.

5.
Light Sci Appl ; 8: 98, 2019.
Article in English | MEDLINE | ID: mdl-31700618

ABSTRACT

Intelligence at either the material or metamaterial level is a goal that researchers have been pursuing. From passive to active, metasurfaces have been developed to be programmable to dynamically and arbitrarily manipulate electromagnetic (EM) wavefields. However, the programmable metasurfaces require manual control to switch among different functionalities. Here, we put forth a smart metasurface that has self-adaptively reprogrammable functionalities without human participation. The smart metasurface is capable of sensing ambient environments by integrating an additional sensor(s) and can adaptively adjust its EM operational functionality through an unmanned sensing feedback system. As an illustrative example, we experimentally develop a motion-sensitive smart metasurface integrated with a three-axis gyroscope, which can adjust self-adaptively the EM radiation beams via different rotations of the metasurface. We develop an online feedback algorithm as the control software to make the smart metasurface achieve single-beam and multibeam steering and other dynamic reactions adaptively. The proposed metasurface is extendable to other physical sensors to detect the humidity, temperature, illuminating light, and so on. Our strategy will open up a new avenue for future unmanned devices that are consistent with the ambient environment.

6.
Research (Wash D C) ; 2019: 2584509, 2019.
Article in English | MEDLINE | ID: mdl-31549052

ABSTRACT

In modern wireless communications, digital information is firstly converted to analog signal by a digital-analog convertor, which is then mixed to high-frequency microwave to be transmitted through a series of devices including modulator, mixer, amplifier, filter, and antenna and is finally received by terminals via a reversed process. Although the wireless communication systems have evolved significantly over the past thirty years, the basic architecture has not been challenged. Here, we propose a method to transmit digital information directly via programmable coding metasurface. Since the coding metasurface is composed of '0' and '1' digital units with opposite phase responses, the digital information can be directly modulated to the metasurface with certain coding sequences and sent to space under the illumination of feeding antenna. The information, being modulated in radiation patterns of the metasurface, can be correctly received by multiple receivers distributed in different locations. This method provides a completely new architecture for wireless communications without using complicated digital-analog convertor and a series of active/passive microwave devices. We build up a prototype to validate the new architecture experimentally, which may find promising applications where information security is highly demanded.

7.
Sci Rep ; 9(1): 1809, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30755667

ABSTRACT

Coding and programmable metamaterials have experienced a rapid development since 2014, leading to many physical phenomena and engineering applications from microwave to terahertz frequencies, and even in the acoustic regime. The major challenge for current programmable metamaterials based on switching diodes is the experimental realization of a huge number of feeding lines for independent control of each digital unit. In this work, we provide an alternative approach for the experimental realization of the programmable metamaterial by developing a mechanical system, which consists of an array of metal blocks with adjustable height. The system supports the combination with conventional coding metamaterials to take full controls of both the phase and polarization of EM waves. As a theoretical byproduct of this work, we propose group delay code to achieve diffraction-limited achromatic redirection of linearly polarized broadband beam from 4 to 6 GHz by combining the group-delay code with the conventional phase code, a feat that traditionally requires complex structural design of unit cell. In view of the multifunctional performance afforded by the full-control of the phase, polarization and group delay, the mechanically controllable metamaterial in the microwave region may benefit different applications, such as imaging, communication, and radar detection.

8.
Natl Sci Rev ; 6(2): 231-238, 2019 Mar.
Article in English | MEDLINE | ID: mdl-34691861

ABSTRACT

Optical non-linear phenomena are typically observed in natural materials interacting with light at high intensities, and they benefit a diverse range of applications from communication to sensing. However, controlling harmonic conversion with high efficiency and flexibility remains a major issue in modern optical and radio-frequency systems. Here, we introduce a dynamic time-domain digital-coding metasurface that enables efficient manipulation of spectral harmonic distribution. By dynamically modulating the local phase of the surface reflectivity, we achieve accurate control of different harmonics in a highly programmable and dynamic fashion, enabling unusual responses, such as velocity illusion. As a relevant application, we propose and realize a novel architecture for wireless communication systems based on the time-domain digital-coding metasurface, which largely simplifies the architecture of modern communication systems, at the same time yielding excellent performance for real-time signal transmission. The presented work, from new concept to new system, opens new pathways in the application of metamaterials to practical technology.

9.
Adv Sci (Weinh) ; 5(11): 1801028, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30479931

ABSTRACT

Since the advent of digital coding metamaterials, a new paradigm is unfolded to sample, compute and program electromagnetic waves in real time with one physical configuration. However, one inconvenient truth is that actively tunable building blocks such as diodes, varactors, and biased lines must be individually controlled by a computer-assisted field programmable gate array and physically connected by electrical wires to the power suppliers. This issue becomes more formidable when more elements are needed for more advanced and multitasked metadevices and metasystems. Here, a remote-mode metasurface is proposed and realized that is addressed and tuned by illuminating light. By tuning the intensity of light-emitting diode light, a digital coding metasurface composed of such light-addressable elements enables dynamically reconfigurable radiation beams in a control-circuitry-free way. Experimental demonstration is validated at microwave frequencies. The proposed dynamical remote-tuning metasurface paves a way for constructing unprecedented digital metasurfaces in a noncontact remote fashion.

10.
Nat Commun ; 9(1): 4334, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337522

ABSTRACT

The recently proposed digital coding metasurfaces make it possible to control electromagnetic (EM) waves in real time, and allow the implementation of many different functionalities in a programmable way. However, current configurations are only space-encoded, and do not exploit the temporal dimension. Here, we propose a general theory of space-time modulated digital coding metasurfaces to obtain simultaneous manipulations of EM waves in both space and frequency domains, i.e., to control the propagation direction and harmonic power distribution simultaneously. As proof-of-principle application examples, we consider harmonic beam steering, beam shaping, and scattering-signature control. For validation, we realize a prototype controlled by a field-programmable gate array, which implements the harmonic beam steering via an optimized space-time coding sequence. Numerical and experimental results, in good agreement, demonstrate good performance of the proposed approach, with potential applications to diverse fields such as wireless communications, cognitive radars, adaptive beamforming, holographic imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...