Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 7: 0376, 2024.
Article in English | MEDLINE | ID: mdl-38741604

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 Omicron variants still causes neurological complications in elderly individuals. However, whether and how aging brains are affected by Omicron variants in terms of neuroinvasiveness and neurovirulence are unknown. Here, we utilize resected paracarcinoma brain tissue from elderly individuals to generate primary brain spheroids (BSs) for investigating the replication capability of live wild-type (WT) strain and Omicron (BA.1/BA.2), as well as the mechanisms underlying their neurobiological effects. We find that both WT and Omicron BA.1/BA.2 are able to enter BSs but weakly replicate. There is no difference between Omicron BA.1/BA.2 and WT strains in neurotropism in aging BSs. However, Omicron BA.1/BA.2 exhibits ameliorating neurological damage. Transcriptional profiling indicates that Omicron BA.1/BA.2 induces a lower neuroinflammatory response than WT strain in elderly BSs, suggesting a mechanistic explanation for their attenuated neuropathogenicity. Moreover, we find that both Omicron BA.1/BA.2 and WT strain infections disrupt neural network activity associated with neurodegenerative disorders by causing neuron degeneration and amyloid-ß deposition in elderly BSs. These results uncover Omicron-specific mechanisms and cellular immune responses associated with severe acute respiratory syndrome coronavirus 2-induced neurological complications.

2.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677816

ABSTRACT

A significant emission enhancement (>100-fold) of glutathione-capped bimetallic gold and copper nanoclusters (AuCuNC@GSH) was achieved by assembling with Al3+ ions and by assembly-induced emission enhancement (AIEE). Further chelation of myricetin to Al3+ resulted in emission quenching of AuCuNC-Al3+, which was applied to specifically detect myricetin. Two linear responses were shown in the range of 0−1.5 µM and 1.5−50 µM, separately, leading to a low limit of detection at 8.7 nM. The method was successfully and accurately applied to myricetin determination in grape juice, which showed good application for real samples. Finally, the in-depth mechanism revealed that both the chelation of myricetin and Al3+ and the inner filter effect (IFE) between myricetin-Al3+ and AuCuNC-Al3+ greatly contributed to the quenching response of myricetin. Therefore, the present study provides an easy way to improve the fluorescence property of metal nanoclusters. Additionally, it supplies a cost-effective and easily performed approach to detect myricetin with high selectivity and sensitivity.


Subject(s)
Copper , Metal Nanoparticles , Gold , Spectrometry, Fluorescence , Glutathione , Ions , Fluorescent Dyes , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...