Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 18(10): 10462-72, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20588900

ABSTRACT

Three-dimensional dynamic deformation of a red blood cell in a dual-trap optical tweezers is computed with the elastic membrane theory and is compared with the experimental results. When a soft particle is trapped by a laser beam, the particle is deformed depending on the radiation stress distribution whereas the stress distribution on the particle in turn depends on the deformation of its morphological shape. We compute the stress re-distribution on the deformed cell and its subsequent deformations recursively until a final equilibrium state solution is achieved. The experiment is done with the red blood cells in suspension swollen to spherical shape. The cell membrane elasticity coefficient is obtained by fitting the theoretical prediction with the experimental data. This approach allows us to evaluate up to 20% deformation of cell's shape.


Subject(s)
Erythrocytes/cytology , Erythrocytes/physiology , Mechanotransduction, Cellular/physiology , Models, Cardiovascular , Optical Tweezers , Cells, Cultured , Computer Simulation , Elastic Modulus/physiology , Hardness/physiology , Humans , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...