Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 948: 174988, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39047827

ABSTRACT

Sewage sludge (SS) is commonly used as agricultural fertilizer worldwide. However, the toxic metal(loid)s in SS raises concerns about soil contamination and the potential risks to human health. This study, conducted since 2007 on the North China Plain, examines the impact of SS use on crops. An experiment was designed with five treatments: conventional fertilization (CK) and four levels of SS application (W1, W2, W3, and W4: 4.5, 9.0, 18.0, and 36.0 t ha-1, respectively). Soil concentrations of eight toxic metal(loid)s (Zn, Cu, Cr, Cd, Ni, Pb, As, and Hg) were analyzed to assess pollution risk using various indices. Health risks associated with maize and wheat grains were also evaluated. Additionally, the impact of long-term SS application on crop yield, soil quality, and human health within a wheat-maize rotation system was examined. SS application increased wheat and maize yields by 5.37 to 19.08 % and 6.97 to 17.94 %, respectively, across treatments W2 to W4. Despite the toxic metal(loid)s in the grains remaining within safe limits, their concentrations showed an upward trend, especially under the W4 treatment. Moreover, SS application significantly increased the soil Zn, Cu, Cr, Cd, Pb, and Hg levels (P < 0.05) without exceeding the national standards. The geo-accumulation index values revealed rising pollution levels for Zn, Cu, Cd, and Hg, which shifted from no contamination to moderate contamination and then to moderate-to-high contamination, yet the overall pollution level remained safe. Soil ecological risks increased from moderate to serious, with Hg posing the greatest risk, particularly under the W4 treatment. Long-term crop intake from the area significantly exposed children and adults to As, contributing 42.12 % and 34.62 % to hazard index (HI), respectively. The HI values for toxic metal(loid)s in these grains surpassed one in both age groups, suggesting health risks from long-term SS cultivated crops.

2.
J Environ Manage ; 233: 54-62, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30557750

ABSTRACT

The impacts of sonication on the photosynthetic activity of Synedra sp. (diatom) and its mechanism were investigated for the first time. Three photosynthetic parameters, i.e., effective quantum yield (Φe), initial slope of rapid light curves (α) and maximum relative electron transport rate (rETRmax) were employed to evaluate its photosynthetic activity during sonication for the first time. The results showed that 600 kHz is the optimal frequency for the inhibition of the photosynthetic activity and biomass as the ultrasonic frequencies varied from 100 to 800 kHz. When the photosynthetic activity was inhibited to be not detected by sonication, Φe, α and rETRmax gradually recovered from 0 to 36.4%, 35.2% and 48.3% of that in the blank group, respectively, after 12-day cultivation (no sonication). However, the biomass was still suppressed to 9.2% of that in the blank after the same cultivation. A single time sonication treatment achieved better inhibition efficiency than the multiple times modes when their total sonication time was equal. The inhibition mechanism for the photosynthetic activity of Synedra sp. by sonication can be concluded as follows: at the early stage, the thylakoids membrane expansion and oscillation can lead to the structure damage of thylakoids; subsequently, OH oxidation is responsible for the chlorophyll-a degradation.


Subject(s)
Diatoms , Chlorophyll , Light , Photosynthesis , Sonication
SELECTION OF CITATIONS
SEARCH DETAIL
...