Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(12): 15133-15142, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488729

ABSTRACT

Dynamic control of ultralong organic room-temperature phosphorescence (UORTP) is a charming target. Herein, we report a stimuli-responsive phosphorescence unit 7H-indolo[2,3-c]quinoline (NBCz) and its derivatives (PCBNBCz, FSO2NBCz, and N2BCzSO2NBCz) that show photo- and oxygen- synergistically induced afterglow activation and afterglow color change in the PMMA film. PCBNBCz and FSO2NBCz feature a donor-acceptor (D-A) structure, and N2BCzSO2NBCz features acceptor-bridged two different phosphorescence units (NBCz and N2BCz). The photoactivated UORTP of PCBNBCz and FSO2NBCz arises from the photoinduced consumption of oxygen in the PMMA film. It is clear that the phosphorescence unit NBCz contributes to subsequent photoinduced UORTP color change because the NBCz-doped PMMA film shows the same UORTP color change process. ESR and HRMS measurements confirmed that oxidation of NBCz occurs at the nitrogen atom of the quinoline ring via photogenerated superoxide radicals, which results in the UORTP color change. TDDFT calculations proved that after oxidation of NBCz, the T1 energy level declines significantly. Furthermore, photocontrolled selective expression of phosphorescence units is achieved in the case of N2BCzSO2NBCz. After further UV irradiation, oxidation of NBCz happened, and the oxidized form N2BCzSO2NBCz-O emitted the intrinsic orange UORTP of NBCz-O selectively and screened the intrinsic yellowish-green UORTP of N2BCz. Finally, multilevel photolithography can be demonstrated based on the photoactivated UORTP and the photoinduced UORTP color change. This work may give a deep insight into organic phosphorescence and pave a simple way for the development of stimulus-responsive smart UORTP materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...